/* * SPDX-License-Identifier: MIT * * Copyright © 2008,2010 Intel Corporation */ #include #include #include #include #include #include "display/intel_frontbuffer.h" #include "gem/i915_gem_ioctls.h" #include "gt/intel_context.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_buffer_pool.h" #include "gt/intel_gt_pm.h" #include "gt/intel_ring.h" #include "pxp/intel_pxp.h" #include "i915_cmd_parser.h" #include "i915_drv.h" #include "i915_file_private.h" #include "i915_gem_clflush.h" #include "i915_gem_context.h" #include "i915_gem_evict.h" #include "i915_gem_ioctls.h" #include "i915_reg.h" #include "i915_trace.h" #include "i915_user_extensions.h" struct eb_vma { struct i915_vma *vma; unsigned int flags; /** This vma's place in the execbuf reservation list */ struct drm_i915_gem_exec_object2 *exec; struct list_head bind_link; struct list_head reloc_link; struct hlist_node node; u32 handle; }; enum { FORCE_CPU_RELOC = 1, FORCE_GTT_RELOC, FORCE_GPU_RELOC, #define DBG_FORCE_RELOC 0 /* choose one of the above! */ }; /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ #define __EXEC_OBJECT_HAS_PIN BIT(29) #define __EXEC_OBJECT_HAS_FENCE BIT(28) #define __EXEC_OBJECT_USERPTR_INIT BIT(27) #define __EXEC_OBJECT_NEEDS_MAP BIT(26) #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) #define __EXEC_HAS_RELOC BIT(31) #define __EXEC_ENGINE_PINNED BIT(30) #define __EXEC_USERPTR_USED BIT(29) #define __EXEC_INTERNAL_FLAGS (~0u << 29) #define UPDATE PIN_OFFSET_FIXED #define BATCH_OFFSET_BIAS (256*1024) #define __I915_EXEC_ILLEGAL_FLAGS \ (__I915_EXEC_UNKNOWN_FLAGS | \ I915_EXEC_CONSTANTS_MASK | \ I915_EXEC_RESOURCE_STREAMER) /* Catch emission of unexpected errors for CI! */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) #undef EINVAL #define EINVAL ({ \ DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 22; \ }) #endif /** * DOC: User command execution * * Userspace submits commands to be executed on the GPU as an instruction * stream within a GEM object we call a batchbuffer. This instructions may * refer to other GEM objects containing auxiliary state such as kernels, * samplers, render targets and even secondary batchbuffers. Userspace does * not know where in the GPU memory these objects reside and so before the * batchbuffer is passed to the GPU for execution, those addresses in the * batchbuffer and auxiliary objects are updated. This is known as relocation, * or patching. To try and avoid having to relocate each object on the next * execution, userspace is told the location of those objects in this pass, * but this remains just a hint as the kernel may choose a new location for * any object in the future. * * At the level of talking to the hardware, submitting a batchbuffer for the * GPU to execute is to add content to a buffer from which the HW * command streamer is reading. * * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. * Execlists, this command is not placed on the same buffer as the * remaining items. * * 2. Add a command to invalidate caches to the buffer. * * 3. Add a batchbuffer start command to the buffer; the start command is * essentially a token together with the GPU address of the batchbuffer * to be executed. * * 4. Add a pipeline flush to the buffer. * * 5. Add a memory write command to the buffer to record when the GPU * is done executing the batchbuffer. The memory write writes the * global sequence number of the request, ``i915_request::global_seqno``; * the i915 driver uses the current value in the register to determine * if the GPU has completed the batchbuffer. * * 6. Add a user interrupt command to the buffer. This command instructs * the GPU to issue an interrupt when the command, pipeline flush and * memory write are completed. * * 7. Inform the hardware of the additional commands added to the buffer * (by updating the tail pointer). * * Processing an execbuf ioctl is conceptually split up into a few phases. * * 1. Validation - Ensure all the pointers, handles and flags are valid. * 2. Reservation - Assign GPU address space for every object * 3. Relocation - Update any addresses to point to the final locations * 4. Serialisation - Order the request with respect to its dependencies * 5. Construction - Construct a request to execute the batchbuffer * 6. Submission (at some point in the future execution) * * Reserving resources for the execbuf is the most complicated phase. We * neither want to have to migrate the object in the address space, nor do * we want to have to update any relocations pointing to this object. Ideally, * we want to leave the object where it is and for all the existing relocations * to match. If the object is given a new address, or if userspace thinks the * object is elsewhere, we have to parse all the relocation entries and update * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that * all the target addresses in all of its objects match the value in the * relocation entries and that they all match the presumed offsets given by the * list of execbuffer objects. Using this knowledge, we know that if we haven't * moved any buffers, all the relocation entries are valid and we can skip * the update. (If userspace is wrong, the likely outcome is an impromptu GPU * hang.) The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.presumed_offset which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. * * The reservation is done is multiple phases. First we try and keep any * object already bound in its current location - so as long as meets the * constraints imposed by the new execbuffer. Any object left unbound after the * first pass is then fitted into any available idle space. If an object does * not fit, all objects are removed from the reservation and the process rerun * after sorting the objects into a priority order (more difficult to fit * objects are tried first). Failing that, the entire VM is cleared and we try * to fit the execbuf once last time before concluding that it simply will not * fit. * * A small complication to all of this is that we allow userspace not only to * specify an alignment and a size for the object in the address space, but * we also allow userspace to specify the exact offset. This objects are * simpler to place (the location is known a priori) all we have to do is make * sure the space is available. * * Once all the objects are in place, patching up the buried pointers to point * to the final locations is a fairly simple job of walking over the relocation * entry arrays, looking up the right address and rewriting the value into * the object. Simple! ... The relocation entries are stored in user memory * and so to access them we have to copy them into a local buffer. That copy * has to avoid taking any pagefaults as they may lead back to a GEM object * requiring the struct_mutex (i.e. recursive deadlock). So once again we split * the relocation into multiple passes. First we try to do everything within an * atomic context (avoid the pagefaults) which requires that we never wait. If * we detect that we may wait, or if we need to fault, then we have to fallback * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm * bells yet?) Dropping the mutex means that we lose all the state we have * built up so far for the execbuf and we must reset any global data. However, * we do leave the objects pinned in their final locations - which is a * potential issue for concurrent execbufs. Once we have left the mutex, we can * allocate and copy all the relocation entries into a large array at our * leisure, reacquire the mutex, reclaim all the objects and other state and * then proceed to update any incorrect addresses with the objects. * * As we process the relocation entries, we maintain a record of whether the * object is being written to. Using NORELOC, we expect userspace to provide * this information instead. We also check whether we can skip the relocation * by comparing the expected value inside the relocation entry with the target's * final address. If they differ, we have to map the current object and rewrite * the 4 or 8 byte pointer within. * * Serialising an execbuf is quite simple according to the rules of the GEM * ABI. Execution within each context is ordered by the order of submission. * Writes to any GEM object are in order of submission and are exclusive. Reads * from a GEM object are unordered with respect to other reads, but ordered by * writes. A write submitted after a read cannot occur before the read, and * similarly any read submitted after a write cannot occur before the write. * Writes are ordered between engines such that only one write occurs at any * time (completing any reads beforehand) - using semaphores where available * and CPU serialisation otherwise. Other GEM access obey the same rules, any * write (either via mmaps using set-domain, or via pwrite) must flush all GPU * reads before starting, and any read (either using set-domain or pread) must * flush all GPU writes before starting. (Note we only employ a barrier before, * we currently rely on userspace not concurrently starting a new execution * whilst reading or writing to an object. This may be an advantage or not * depending on how much you trust userspace not to shoot themselves in the * foot.) Serialisation may just result in the request being inserted into * a DAG awaiting its turn, but most simple is to wait on the CPU until * all dependencies are resolved. * * After all of that, is just a matter of closing the request and handing it to * the hardware (well, leaving it in a queue to be executed). However, we also * offer the ability for batchbuffers to be run with elevated privileges so * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) * Before any batch is given extra privileges we first must check that it * contains no nefarious instructions, we check that each instruction is from * our whitelist and all registers are also from an allowed list. We first * copy the user's batchbuffer to a shadow (so that the user doesn't have * access to it, either by the CPU or GPU as we scan it) and then parse each * instruction. If everything is ok, we set a flag telling the hardware to run * the batchbuffer in trusted mode, otherwise the ioctl is rejected. */ struct eb_fence { struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ struct dma_fence *dma_fence; u64 value; struct dma_fence_chain *chain_fence; }; struct i915_execbuffer { struct drm_i915_private *i915; /** i915 backpointer */ struct drm_file *file; /** per-file lookup tables and limits */ struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ struct eb_vma *vma; struct intel_gt *gt; /* gt for the execbuf */ struct intel_context *context; /* logical state for the request */ struct i915_gem_context *gem_context; /** caller's context */ /** our requests to build */ struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; /** identity of the batch obj/vma */ struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; struct i915_vma *trampoline; /** trampoline used for chaining */ /** used for excl fence in dma_resv objects when > 1 BB submitted */ struct dma_fence *composite_fence; /** actual size of execobj[] as we may extend it for the cmdparser */ unsigned int buffer_count; /* number of batches in execbuf IOCTL */ unsigned int num_batches; /** list of vma not yet bound during reservation phase */ struct list_head unbound; /** list of vma that have execobj.relocation_count */ struct list_head relocs; struct i915_gem_ww_ctx ww; /** * Track the most recently used object for relocations, as we * frequently have to perform multiple relocations within the same * obj/page */ struct reloc_cache { struct drm_mm_node node; /** temporary GTT binding */ unsigned long vaddr; /** Current kmap address */ unsigned long page; /** Currently mapped page index */ unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ bool use_64bit_reloc : 1; bool has_llc : 1; bool has_fence : 1; bool needs_unfenced : 1; } reloc_cache; u64 invalid_flags; /** Set of execobj.flags that are invalid */ /** Length of batch within object */ u64 batch_len[MAX_ENGINE_INSTANCE + 1]; u32 batch_start_offset; /** Location within object of batch */ u32 batch_flags; /** Flags composed for emit_bb_start() */ struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ /** * Indicate either the size of the hastable used to resolve * relocation handles, or if negative that we are using a direct * index into the execobj[]. */ int lut_size; struct hlist_head *buckets; /** ht for relocation handles */ struct eb_fence *fences; unsigned long num_fences; #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; #endif }; static int eb_parse(struct i915_execbuffer *eb); static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); static void eb_unpin_engine(struct i915_execbuffer *eb); static void eb_capture_release(struct i915_execbuffer *eb); static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) { return intel_engine_requires_cmd_parser(eb->context->engine) || (intel_engine_using_cmd_parser(eb->context->engine) && eb->args->batch_len); } static int eb_create(struct i915_execbuffer *eb) { if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { unsigned int size = 1 + ilog2(eb->buffer_count); /* * Without a 1:1 association between relocation handles and * the execobject[] index, we instead create a hashtable. * We size it dynamically based on available memory, starting * first with 1:1 assocative hash and scaling back until * the allocation succeeds. * * Later on we use a positive lut_size to indicate we are * using this hashtable, and a negative value to indicate a * direct lookup. */ do { gfp_t flags; /* While we can still reduce the allocation size, don't * raise a warning and allow the allocation to fail. * On the last pass though, we want to try as hard * as possible to perform the allocation and warn * if it fails. */ flags = GFP_KERNEL; if (size > 1) flags |= __GFP_NORETRY | __GFP_NOWARN; eb->buckets = kzalloc(sizeof(struct hlist_head) << size, flags); if (eb->buckets) break; } while (--size); if (unlikely(!size)) return -ENOMEM; eb->lut_size = size; } else { eb->lut_size = -eb->buffer_count; } return 0; } static bool eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, const struct i915_vma *vma, unsigned int flags) { const u64 start = i915_vma_offset(vma); const u64 size = i915_vma_size(vma); if (size < entry->pad_to_size) return true; if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) return true; if (flags & EXEC_OBJECT_PINNED && start != entry->offset) return true; if (flags & __EXEC_OBJECT_NEEDS_BIAS && start < BATCH_OFFSET_BIAS) return true; if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && (start + size + 4095) >> 32) return true; if (flags & __EXEC_OBJECT_NEEDS_MAP && !i915_vma_is_map_and_fenceable(vma)) return true; return false; } static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, unsigned int exec_flags) { u64 pin_flags = 0; if (exec_flags & EXEC_OBJECT_NEEDS_GTT) pin_flags |= PIN_GLOBAL; /* * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, * limit address to the first 4GBs for unflagged objects. */ if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) pin_flags |= PIN_ZONE_4G; if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) pin_flags |= PIN_MAPPABLE; if (exec_flags & EXEC_OBJECT_PINNED) pin_flags |= entry->offset | PIN_OFFSET_FIXED; else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; return pin_flags; } static inline int eb_pin_vma(struct i915_execbuffer *eb, const struct drm_i915_gem_exec_object2 *entry, struct eb_vma *ev) { struct i915_vma *vma = ev->vma; u64 pin_flags; int err; if (vma->node.size) pin_flags = __i915_vma_offset(vma); else pin_flags = entry->offset & PIN_OFFSET_MASK; pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) pin_flags |= PIN_GLOBAL; /* Attempt to reuse the current location if available */ err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); if (err == -EDEADLK) return err; if (unlikely(err)) { if (entry->flags & EXEC_OBJECT_PINNED) return err; /* Failing that pick any _free_ space if suitable */ err = i915_vma_pin_ww(vma, &eb->ww, entry->pad_to_size, entry->alignment, eb_pin_flags(entry, ev->flags) | PIN_USER | PIN_NOEVICT | PIN_VALIDATE); if (unlikely(err)) return err; } if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { err = i915_vma_pin_fence(vma); if (unlikely(err)) return err; if (vma->fence) ev->flags |= __EXEC_OBJECT_HAS_FENCE; } ev->flags |= __EXEC_OBJECT_HAS_PIN; if (eb_vma_misplaced(entry, vma, ev->flags)) return -EBADSLT; return 0; } static inline void eb_unreserve_vma(struct eb_vma *ev) { if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) __i915_vma_unpin_fence(ev->vma); ev->flags &= ~__EXEC_OBJECT_RESERVED; } static int eb_validate_vma(struct i915_execbuffer *eb, struct drm_i915_gem_exec_object2 *entry, struct i915_vma *vma) { /* Relocations are disallowed for all platforms after TGL-LP. This * also covers all platforms with local memory. */ if (entry->relocation_count && GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) return -EINVAL; if (unlikely(entry->flags & eb->invalid_flags)) return -EINVAL; if (unlikely(entry->alignment && !is_power_of_2_u64(entry->alignment))) return -EINVAL; /* * Offset can be used as input (EXEC_OBJECT_PINNED), reject * any non-page-aligned or non-canonical addresses. */ if (unlikely(entry->flags & EXEC_OBJECT_PINNED && entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) return -EINVAL; /* pad_to_size was once a reserved field, so sanitize it */ if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { if (unlikely(offset_in_page(entry->pad_to_size))) return -EINVAL; } else { entry->pad_to_size = 0; } /* * From drm_mm perspective address space is continuous, * so from this point we're always using non-canonical * form internally. */ entry->offset = gen8_noncanonical_addr(entry->offset); if (!eb->reloc_cache.has_fence) { entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; } else { if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || eb->reloc_cache.needs_unfenced) && i915_gem_object_is_tiled(vma->obj)) entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; } return 0; } static inline bool is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) { return eb->args->flags & I915_EXEC_BATCH_FIRST ? buffer_idx < eb->num_batches : buffer_idx >= eb->args->buffer_count - eb->num_batches; } static int eb_add_vma(struct i915_execbuffer *eb, unsigned int *current_batch, unsigned int i, struct i915_vma *vma) { struct drm_i915_private *i915 = eb->i915; struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct eb_vma *ev = &eb->vma[i]; ev->vma = vma; ev->exec = entry; ev->flags = entry->flags; if (eb->lut_size > 0) { ev->handle = entry->handle; hlist_add_head(&ev->node, &eb->buckets[hash_32(entry->handle, eb->lut_size)]); } if (entry->relocation_count) list_add_tail(&ev->reloc_link, &eb->relocs); /* * SNA is doing fancy tricks with compressing batch buffers, which leads * to negative relocation deltas. Usually that works out ok since the * relocate address is still positive, except when the batch is placed * very low in the GTT. Ensure this doesn't happen. * * Note that actual hangs have only been observed on gen7, but for * paranoia do it everywhere. */ if (is_batch_buffer(eb, i)) { if (entry->relocation_count && !(ev->flags & EXEC_OBJECT_PINNED)) ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; if (eb->reloc_cache.has_fence) ev->flags |= EXEC_OBJECT_NEEDS_FENCE; eb->batches[*current_batch] = ev; if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { drm_dbg(&i915->drm, "Attempting to use self-modifying batch buffer\n"); return -EINVAL; } if (range_overflows_t(u64, eb->batch_start_offset, eb->args->batch_len, ev->vma->size)) { drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); return -EINVAL; } if (eb->args->batch_len == 0) eb->batch_len[*current_batch] = ev->vma->size - eb->batch_start_offset; else eb->batch_len[*current_batch] = eb->args->batch_len; if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ drm_dbg(&i915->drm, "Invalid batch length\n"); return -EINVAL; } ++*current_batch; } return 0; } static inline int use_cpu_reloc(const struct reloc_cache *cache, const struct drm_i915_gem_object *obj) { if (!i915_gem_object_has_struct_page(obj)) return false; if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) return true; if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) return false; /* * For objects created by userspace through GEM_CREATE with pat_index * set by set_pat extension, i915_gem_object_has_cache_level() always * return true, otherwise the call would fall back to checking whether * the object is un-cached. */ return (cache->has_llc || obj->cache_dirty || !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE)); } static int eb_reserve_vma(struct i915_execbuffer *eb, struct eb_vma *ev, u64 pin_flags) { struct drm_i915_gem_exec_object2 *entry = ev->exec; struct i915_vma *vma = ev->vma; int err; if (drm_mm_node_allocated(&vma->node) && eb_vma_misplaced(entry, vma, ev->flags)) { err = i915_vma_unbind(vma); if (err) return err; } err = i915_vma_pin_ww(vma, &eb->ww, entry->pad_to_size, entry->alignment, eb_pin_flags(entry, ev->flags) | pin_flags); if (err) return err; if (entry->offset != i915_vma_offset(vma)) { entry->offset = i915_vma_offset(vma) | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { err = i915_vma_pin_fence(vma); if (unlikely(err)) return err; if (vma->fence) ev->flags |= __EXEC_OBJECT_HAS_FENCE; } ev->flags |= __EXEC_OBJECT_HAS_PIN; GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); return 0; } static bool eb_unbind(struct i915_execbuffer *eb, bool force) { const unsigned int count = eb->buffer_count; unsigned int i; struct list_head last; bool unpinned = false; /* Resort *all* the objects into priority order */ INIT_LIST_HEAD(&eb->unbound); INIT_LIST_HEAD(&last); for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; unsigned int flags = ev->flags; if (!force && flags & EXEC_OBJECT_PINNED && flags & __EXEC_OBJECT_HAS_PIN) continue; unpinned = true; eb_unreserve_vma(ev); if (flags & EXEC_OBJECT_PINNED) /* Pinned must have their slot */ list_add(&ev->bind_link, &eb->unbound); else if (flags & __EXEC_OBJECT_NEEDS_MAP) /* Map require the lowest 256MiB (aperture) */ list_add_tail(&ev->bind_link, &eb->unbound); else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) /* Prioritise 4GiB region for restricted bo */ list_add(&ev->bind_link, &last); else list_add_tail(&ev->bind_link, &last); } list_splice_tail(&last, &eb->unbound); return unpinned; } static int eb_reserve(struct i915_execbuffer *eb) { struct eb_vma *ev; unsigned int pass; int err = 0; /* * We have one more buffers that we couldn't bind, which could be due to * various reasons. To resolve this we have 4 passes, with every next * level turning the screws tighter: * * 0. Unbind all objects that do not match the GTT constraints for the * execbuffer (fenceable, mappable, alignment etc). Bind all new * objects. This avoids unnecessary unbinding of later objects in order * to make room for the earlier objects *unless* we need to defragment. * * 1. Reorder the buffers, where objects with the most restrictive * placement requirements go first (ignoring fixed location buffers for * now). For example, objects needing the mappable aperture (the first * 256M of GTT), should go first vs objects that can be placed just * about anywhere. Repeat the previous pass. * * 2. Consider buffers that are pinned at a fixed location. Also try to * evict the entire VM this time, leaving only objects that we were * unable to lock. Try again to bind the buffers. (still using the new * buffer order). * * 3. We likely have object lock contention for one or more stubborn * objects in the VM, for which we need to evict to make forward * progress (perhaps we are fighting the shrinker?). When evicting the * VM this time around, anything that we can't lock we now track using * the busy_bo, using the full lock (after dropping the vm->mutex to * prevent deadlocks), instead of trylock. We then continue to evict the * VM, this time with the stubborn object locked, which we can now * hopefully unbind (if still bound in the VM). Repeat until the VM is * evicted. Finally we should be able bind everything. */ for (pass = 0; pass <= 3; pass++) { int pin_flags = PIN_USER | PIN_VALIDATE; if (pass == 0) pin_flags |= PIN_NONBLOCK; if (pass >= 1) eb_unbind(eb, pass >= 2); if (pass == 2) { err = mutex_lock_interruptible(&eb->context->vm->mutex); if (!err) { err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); mutex_unlock(&eb->context->vm->mutex); } if (err) return err; } if (pass == 3) { retry: err = mutex_lock_interruptible(&eb->context->vm->mutex); if (!err) { struct drm_i915_gem_object *busy_bo = NULL; err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); mutex_unlock(&eb->context->vm->mutex); if (err && busy_bo) { err = i915_gem_object_lock(busy_bo, &eb->ww); i915_gem_object_put(busy_bo); if (!err) goto retry; } } if (err) return err; } list_for_each_entry(ev, &eb->unbound, bind_link) { err = eb_reserve_vma(eb, ev, pin_flags); if (err) break; } if (err != -ENOSPC) break; } return err; } static int eb_select_context(struct i915_execbuffer *eb) { struct i915_gem_context *ctx; ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); if (unlikely(IS_ERR(ctx))) return PTR_ERR(ctx); eb->gem_context = ctx; if (i915_gem_context_has_full_ppgtt(ctx)) eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; return 0; } static int __eb_add_lut(struct i915_execbuffer *eb, u32 handle, struct i915_vma *vma) { struct i915_gem_context *ctx = eb->gem_context; struct i915_lut_handle *lut; int err; lut = i915_lut_handle_alloc(); if (unlikely(!lut)) return -ENOMEM; i915_vma_get(vma); if (!atomic_fetch_inc(&vma->open_count)) i915_vma_reopen(vma); lut->handle = handle; lut->ctx = ctx; /* Check that the context hasn't been closed in the meantime */ err = -EINTR; if (!mutex_lock_interruptible(&ctx->lut_mutex)) { if (likely(!i915_gem_context_is_closed(ctx))) err = radix_tree_insert(&ctx->handles_vma, handle, vma); else err = -ENOENT; if (err == 0) { /* And nor has this handle */ struct drm_i915_gem_object *obj = vma->obj; spin_lock(&obj->lut_lock); if (idr_find(&eb->file->object_idr, handle) == obj) { list_add(&lut->obj_link, &obj->lut_list); } else { radix_tree_delete(&ctx->handles_vma, handle); err = -ENOENT; } spin_unlock(&obj->lut_lock); } mutex_unlock(&ctx->lut_mutex); } if (unlikely(err)) goto err; return 0; err: i915_vma_close(vma); i915_vma_put(vma); i915_lut_handle_free(lut); return err; } static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) { struct i915_address_space *vm = eb->context->vm; do { struct drm_i915_gem_object *obj; struct i915_vma *vma; int err; rcu_read_lock(); vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); if (likely(vma && vma->vm == vm)) vma = i915_vma_tryget(vma); rcu_read_unlock(); if (likely(vma)) return vma; obj = i915_gem_object_lookup(eb->file, handle); if (unlikely(!obj)) return ERR_PTR(-ENOENT); /* * If the user has opted-in for protected-object tracking, make * sure the object encryption can be used. * We only need to do this when the object is first used with * this context, because the context itself will be banned when * the protected objects become invalid. */ if (i915_gem_context_uses_protected_content(eb->gem_context) && i915_gem_object_is_protected(obj)) { err = intel_pxp_key_check(eb->i915->pxp, obj, true); if (err) { i915_gem_object_put(obj); return ERR_PTR(err); } } vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } err = __eb_add_lut(eb, handle, vma); if (likely(!err)) return vma; i915_gem_object_put(obj); if (err != -EEXIST) return ERR_PTR(err); } while (1); } static int eb_lookup_vmas(struct i915_execbuffer *eb) { unsigned int i, current_batch = 0; int err = 0; INIT_LIST_HEAD(&eb->relocs); for (i = 0; i < eb->buffer_count; i++) { struct i915_vma *vma; vma = eb_lookup_vma(eb, eb->exec[i].handle); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto err; } err = eb_validate_vma(eb, &eb->exec[i], vma); if (unlikely(err)) { i915_vma_put(vma); goto err; } err = eb_add_vma(eb, ¤t_batch, i, vma); if (err) return err; if (i915_gem_object_is_userptr(vma->obj)) { err = i915_gem_object_userptr_submit_init(vma->obj); if (err) { if (i + 1 < eb->buffer_count) { /* * Execbuffer code expects last vma entry to be NULL, * since we already initialized this entry, * set the next value to NULL or we mess up * cleanup handling. */ eb->vma[i + 1].vma = NULL; } return err; } eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; eb->args->flags |= __EXEC_USERPTR_USED; } } return 0; err: eb->vma[i].vma = NULL; return err; } static int eb_lock_vmas(struct i915_execbuffer *eb) { unsigned int i; int err; for (i = 0; i < eb->buffer_count; i++) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; err = i915_gem_object_lock(vma->obj, &eb->ww); if (err) return err; } return 0; } static int eb_validate_vmas(struct i915_execbuffer *eb) { unsigned int i; int err; INIT_LIST_HEAD(&eb->unbound); err = eb_lock_vmas(eb); if (err) return err; for (i = 0; i < eb->buffer_count; i++) { struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; err = eb_pin_vma(eb, entry, ev); if (err == -EDEADLK) return err; if (!err) { if (entry->offset != i915_vma_offset(vma)) { entry->offset = i915_vma_offset(vma) | UPDATE; eb->args->flags |= __EXEC_HAS_RELOC; } } else { eb_unreserve_vma(ev); list_add_tail(&ev->bind_link, &eb->unbound); if (drm_mm_node_allocated(&vma->node)) { err = i915_vma_unbind(vma); if (err) return err; } } /* Reserve enough slots to accommodate composite fences */ err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); if (err) return err; GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); } if (!list_empty(&eb->unbound)) return eb_reserve(eb); return 0; } static struct eb_vma * eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) { if (eb->lut_size < 0) { if (handle >= -eb->lut_size) return NULL; return &eb->vma[handle]; } else { struct hlist_head *head; struct eb_vma *ev; head = &eb->buckets[hash_32(handle, eb->lut_size)]; hlist_for_each_entry(ev, head, node) { if (ev->handle == handle) return ev; } return NULL; } } static void eb_release_vmas(struct i915_execbuffer *eb, bool final) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; if (!vma) break; eb_unreserve_vma(ev); if (final) i915_vma_put(vma); } eb_capture_release(eb); eb_unpin_engine(eb); } static void eb_destroy(const struct i915_execbuffer *eb) { if (eb->lut_size > 0) kfree(eb->buckets); } static inline u64 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, const struct i915_vma *target) { return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); } static void reloc_cache_init(struct reloc_cache *cache, struct drm_i915_private *i915) { cache->page = -1; cache->vaddr = 0; /* Must be a variable in the struct to allow GCC to unroll. */ cache->graphics_ver = GRAPHICS_VER(i915); cache->has_llc = HAS_LLC(i915); cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); cache->has_fence = cache->graphics_ver < 4; cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; cache->node.flags = 0; } static inline void *unmask_page(unsigned long p) { return (void *)(uintptr_t)(p & LINUX_PAGE_MASK); } static inline unsigned int unmask_flags(unsigned long p) { return p & ~LINUX_PAGE_MASK; } #define KMAP 0x4 /* after CLFLUSH_FLAGS */ static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) { struct drm_i915_private *i915 = container_of(cache, struct i915_execbuffer, reloc_cache)->i915; return to_gt(i915)->ggtt; } static void reloc_cache_unmap(struct reloc_cache *cache) { void *vaddr; if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) kunmap_atomic(vaddr); else io_mapping_unmap_atomic((void __iomem *)vaddr); } static void reloc_cache_remap(struct reloc_cache *cache, struct drm_i915_gem_object *obj) { void *vaddr; if (!cache->vaddr) return; if (cache->vaddr & KMAP) { struct vm_page *page = i915_gem_object_get_page(obj, cache->page); vaddr = kmap_atomic(page); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; } else { struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; offset = cache->node.start; if (!drm_mm_node_allocated(&cache->node)) offset += cache->page << PAGE_SHIFT; cache->vaddr = (unsigned long) io_mapping_map_atomic_wc(&ggtt->iomap, offset); } } static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) { void *vaddr; if (!cache->vaddr) return; vaddr = unmask_page(cache->vaddr); if (cache->vaddr & KMAP) { struct drm_i915_gem_object *obj = (struct drm_i915_gem_object *)cache->node.mm; if (cache->vaddr & CLFLUSH_AFTER) mb(); kunmap_atomic(vaddr); i915_gem_object_finish_access(obj); } else { struct i915_ggtt *ggtt = cache_to_ggtt(cache); intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __iomem *)vaddr); if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.clear_range(&ggtt->vm, cache->node.start, cache->node.size); mutex_lock(&ggtt->vm.mutex); drm_mm_remove_node(&cache->node); mutex_unlock(&ggtt->vm.mutex); } else { i915_vma_unpin((struct i915_vma *)cache->node.mm); } } cache->vaddr = 0; cache->page = -1; } static void *reloc_kmap(struct drm_i915_gem_object *obj, struct reloc_cache *cache, unsigned long pageno) { void *vaddr; struct vm_page *page; if (cache->vaddr) { kunmap_atomic(unmask_page(cache->vaddr)); } else { unsigned int flushes; int err; err = i915_gem_object_prepare_write(obj, &flushes); if (err) return ERR_PTR(err); BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK); cache->vaddr = flushes | KMAP; cache->node.mm = (void *)obj; if (flushes) mb(); } page = i915_gem_object_get_page(obj, pageno); if (!obj->mm.dirty) set_page_dirty(page); vaddr = kmap_atomic(page); cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; cache->page = pageno; return vaddr; } static void *reloc_iomap(struct i915_vma *batch, struct i915_execbuffer *eb, unsigned long page) { struct drm_i915_gem_object *obj = batch->obj; struct reloc_cache *cache = &eb->reloc_cache; struct i915_ggtt *ggtt = cache_to_ggtt(cache); unsigned long offset; void *vaddr; if (cache->vaddr) { intel_gt_flush_ggtt_writes(ggtt->vm.gt); io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); } else { struct i915_vma *vma = ERR_PTR(-ENODEV); int err; if (i915_gem_object_is_tiled(obj)) return ERR_PTR(-EINVAL); if (use_cpu_reloc(cache, obj)) return NULL; err = i915_gem_object_set_to_gtt_domain(obj, true); if (err) return ERR_PTR(err); /* * i915_gem_object_ggtt_pin_ww may attempt to remove the batch * VMA from the object list because we no longer pin. * * Only attempt to pin the batch buffer to ggtt if the current batch * is not inside ggtt, or the batch buffer is not misplaced. */ if (!i915_is_ggtt(batch->vm) || !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK /* NOWARN */ | PIN_NOEVICT); } if (vma == ERR_PTR(-EDEADLK)) return vma; if (IS_ERR(vma)) { memset(&cache->node, 0, sizeof(cache->node)); mutex_lock(&ggtt->vm.mutex); err = drm_mm_insert_node_in_range (&ggtt->vm.mm, &cache->node, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); mutex_unlock(&ggtt->vm.mutex); if (err) /* no inactive aperture space, use cpu reloc */ return NULL; } else { cache->node.start = i915_ggtt_offset(vma); cache->node.mm = (void *)vma; } } offset = cache->node.start; if (drm_mm_node_allocated(&cache->node)) { ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, page), offset, i915_gem_get_pat_index(ggtt->vm.i915, I915_CACHE_NONE), 0); } else { offset += page << PAGE_SHIFT; } vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, offset); cache->page = page; cache->vaddr = (unsigned long)vaddr; return vaddr; } static void *reloc_vaddr(struct i915_vma *vma, struct i915_execbuffer *eb, unsigned long page) { struct reloc_cache *cache = &eb->reloc_cache; void *vaddr; if (cache->page == page) { vaddr = unmask_page(cache->vaddr); } else { vaddr = NULL; if ((cache->vaddr & KMAP) == 0) vaddr = reloc_iomap(vma, eb, page); if (!vaddr) vaddr = reloc_kmap(vma->obj, cache, page); } return vaddr; } static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) { if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { if (flushes & CLFLUSH_BEFORE) drm_clflush_virt_range(addr, sizeof(*addr)); *addr = value; /* * Writes to the same cacheline are serialised by the CPU * (including clflush). On the write path, we only require * that it hits memory in an orderly fashion and place * mb barriers at the start and end of the relocation phase * to ensure ordering of clflush wrt to the system. */ if (flushes & CLFLUSH_AFTER) drm_clflush_virt_range(addr, sizeof(*addr)); } else *addr = value; } static u64 relocate_entry(struct i915_vma *vma, const struct drm_i915_gem_relocation_entry *reloc, struct i915_execbuffer *eb, const struct i915_vma *target) { u64 target_addr = relocation_target(reloc, target); u64 offset = reloc->offset; bool wide = eb->reloc_cache.use_64bit_reloc; void *vaddr; repeat: vaddr = reloc_vaddr(vma, eb, offset >> PAGE_SHIFT); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); clflush_write32(vaddr + offset_in_page(offset), lower_32_bits(target_addr), eb->reloc_cache.vaddr); if (wide) { offset += sizeof(u32); target_addr >>= 32; wide = false; goto repeat; } return target->node.start | UPDATE; } static u64 eb_relocate_entry(struct i915_execbuffer *eb, struct eb_vma *ev, const struct drm_i915_gem_relocation_entry *reloc) { struct drm_i915_private *i915 = eb->i915; struct eb_vma *target; int err; /* we've already hold a reference to all valid objects */ target = eb_get_vma(eb, reloc->target_handle); if (unlikely(!target)) return -ENOENT; /* Validate that the target is in a valid r/w GPU domain */ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { drm_dbg(&i915->drm, "reloc with multiple write domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (unlikely((reloc->write_domain | reloc->read_domains) & ~I915_GEM_GPU_DOMAINS)) { drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " "target %d offset %d " "read %08x write %08x", reloc->target_handle, (int) reloc->offset, reloc->read_domains, reloc->write_domain); return -EINVAL; } if (reloc->write_domain) { target->flags |= EXEC_OBJECT_WRITE; /* * Sandybridge PPGTT errata: We need a global gtt mapping * for MI and pipe_control writes because the gpu doesn't * properly redirect them through the ppgtt for non_secure * batchbuffers. */ if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && GRAPHICS_VER(eb->i915) == 6 && !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { struct i915_vma *vma = target->vma; reloc_cache_unmap(&eb->reloc_cache); mutex_lock(&vma->vm->mutex); err = i915_vma_bind(target->vma, target->vma->obj->pat_index, PIN_GLOBAL, NULL, NULL); mutex_unlock(&vma->vm->mutex); reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); if (err) return err; } } /* * If the relocation already has the right value in it, no * more work needs to be done. */ if (!DBG_FORCE_RELOC && gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) return 0; /* Check that the relocation address is valid... */ if (unlikely(reloc->offset > ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { drm_dbg(&i915->drm, "Relocation beyond object bounds: " "target %d offset %d size %d.\n", reloc->target_handle, (int)reloc->offset, (int)ev->vma->size); return -EINVAL; } if (unlikely(reloc->offset & 3)) { drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " "target %d offset %d.\n", reloc->target_handle, (int)reloc->offset); return -EINVAL; } /* * If we write into the object, we need to force the synchronisation * barrier, either with an asynchronous clflush or if we executed the * patching using the GPU (though that should be serialised by the * timeline). To be completely sure, and since we are required to * do relocations we are already stalling, disable the user's opt * out of our synchronisation. */ ev->flags &= ~EXEC_OBJECT_ASYNC; /* and update the user's relocation entry */ return relocate_entry(ev->vma, reloc, eb, target->vma); } static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) { #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; const struct drm_i915_gem_exec_object2 *entry = ev->exec; struct drm_i915_gem_relocation_entry __user *urelocs = u64_to_user_ptr(entry->relocs_ptr); unsigned long remain = entry->relocation_count; if (unlikely(remain > N_RELOC(ULONG_MAX))) return -EINVAL; /* * We must check that the entire relocation array is safe * to read. However, if the array is not writable the user loses * the updated relocation values. */ if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) return -EFAULT; do { struct drm_i915_gem_relocation_entry *r = stack; unsigned int count = min_t(unsigned long, remain, ARRAY_SIZE(stack)); unsigned int copied; /* * This is the fast path and we cannot handle a pagefault * whilst holding the struct mutex lest the user pass in the * relocations contained within a mmaped bo. For in such a case * we, the page fault handler would call i915_gem_fault() and * we would try to acquire the struct mutex again. Obviously * this is bad and so lockdep complains vehemently. */ pagefault_disable(); copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); pagefault_enable(); if (unlikely(copied)) { remain = -EFAULT; goto out; } remain -= count; do { u64 offset = eb_relocate_entry(eb, ev, r); if (likely(offset == 0)) { } else if ((s64)offset < 0) { remain = (int)offset; goto out; } else { /* * Note that reporting an error now * leaves everything in an inconsistent * state as we have *already* changed * the relocation value inside the * object. As we have not changed the * reloc.presumed_offset or will not * change the execobject.offset, on the * call we may not rewrite the value * inside the object, leaving it * dangling and causing a GPU hang. Unless * userspace dynamically rebuilds the * relocations on each execbuf rather than * presume a static tree. * * We did previously check if the relocations * were writable (access_ok), an error now * would be a strange race with mprotect, * having already demonstrated that we * can read from this userspace address. */ offset = gen8_canonical_addr(offset & ~UPDATE); __put_user(offset, &urelocs[r - stack].presumed_offset); } } while (r++, --count); urelocs += ARRAY_SIZE(stack); } while (remain); out: reloc_cache_reset(&eb->reloc_cache, eb); return remain; } static int eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) { const struct drm_i915_gem_exec_object2 *entry = ev->exec; struct drm_i915_gem_relocation_entry *relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); unsigned int i; int err; for (i = 0; i < entry->relocation_count; i++) { u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); if ((s64)offset < 0) { err = (int)offset; goto err; } } err = 0; err: reloc_cache_reset(&eb->reloc_cache, eb); return err; } static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) { const char __user *addr, *end; unsigned long size; char __maybe_unused c; size = entry->relocation_count; if (size == 0) return 0; if (size > N_RELOC(ULONG_MAX)) return -EINVAL; addr = u64_to_user_ptr(entry->relocs_ptr); size *= sizeof(struct drm_i915_gem_relocation_entry); if (!access_ok(addr, size)) return -EFAULT; end = addr + size; for (; addr < end; addr += PAGE_SIZE) { int err = __get_user(c, addr); if (err) return err; } return __get_user(c, end - 1); } static int eb_copy_relocations(const struct i915_execbuffer *eb) { struct drm_i915_gem_relocation_entry *relocs; const unsigned int count = eb->buffer_count; unsigned int i; int err; for (i = 0; i < count; i++) { const unsigned int nreloc = eb->exec[i].relocation_count; struct drm_i915_gem_relocation_entry __user *urelocs; unsigned long size; unsigned long copied; if (nreloc == 0) continue; err = check_relocations(&eb->exec[i]); if (err) goto err; urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); size = nreloc * sizeof(*relocs); relocs = kvmalloc_array(size, 1, GFP_KERNEL); if (!relocs) { err = -ENOMEM; goto err; } /* copy_from_user is limited to < 4GiB */ copied = 0; do { unsigned int len = min_t(u64, BIT_ULL(31), size - copied); if (__copy_from_user((char *)relocs + copied, (char __user *)urelocs + copied, len)) goto end; copied += len; } while (copied < size); /* * As we do not update the known relocation offsets after * relocating (due to the complexities in lock handling), * we need to mark them as invalid now so that we force the * relocation processing next time. Just in case the target * object is evicted and then rebound into its old * presumed_offset before the next execbuffer - if that * happened we would make the mistake of assuming that the * relocations were valid. */ if (!user_access_begin(urelocs, size)) goto end; for (copied = 0; copied < nreloc; copied++) unsafe_put_user(-1, &urelocs[copied].presumed_offset, end_user); user_access_end(); eb->exec[i].relocs_ptr = (uintptr_t)relocs; } return 0; end_user: user_access_end(); end: kvfree(relocs); err = -EFAULT; err: while (i--) { relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); if (eb->exec[i].relocation_count) kvfree(relocs); } return err; } static int eb_prefault_relocations(const struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { int err; err = check_relocations(&eb->exec[i]); if (err) return err; } return 0; } static int eb_reinit_userptr(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i; int ret; if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) return 0; for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; if (!i915_gem_object_is_userptr(ev->vma->obj)) continue; ret = i915_gem_object_userptr_submit_init(ev->vma->obj); if (ret) return ret; ev->flags |= __EXEC_OBJECT_USERPTR_INIT; } return 0; } static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) { bool have_copy = false; struct eb_vma *ev; int err = 0; repeat: if (signal_pending(current)) { err = -ERESTARTSYS; goto out; } /* We may process another execbuffer during the unlock... */ eb_release_vmas(eb, false); i915_gem_ww_ctx_fini(&eb->ww); /* * We take 3 passes through the slowpatch. * * 1 - we try to just prefault all the user relocation entries and * then attempt to reuse the atomic pagefault disabled fast path again. * * 2 - we copy the user entries to a local buffer here outside of the * local and allow ourselves to wait upon any rendering before * relocations * * 3 - we already have a local copy of the relocation entries, but * were interrupted (EAGAIN) whilst waiting for the objects, try again. */ if (!err) { err = eb_prefault_relocations(eb); } else if (!have_copy) { err = eb_copy_relocations(eb); have_copy = err == 0; } else { cond_resched(); err = 0; } if (!err) err = eb_reinit_userptr(eb); i915_gem_ww_ctx_init(&eb->ww, true); if (err) goto out; /* reacquire the objects */ repeat_validate: err = eb_pin_engine(eb, false); if (err) goto err; err = eb_validate_vmas(eb); if (err) goto err; GEM_BUG_ON(!eb->batches[0]); list_for_each_entry(ev, &eb->relocs, reloc_link) { if (!have_copy) { err = eb_relocate_vma(eb, ev); if (err) break; } else { err = eb_relocate_vma_slow(eb, ev); if (err) break; } } if (err == -EDEADLK) goto err; if (err && !have_copy) goto repeat; if (err) goto err; /* as last step, parse the command buffer */ err = eb_parse(eb); if (err) goto err; /* * Leave the user relocations as are, this is the painfully slow path, * and we want to avoid the complication of dropping the lock whilst * having buffers reserved in the aperture and so causing spurious * ENOSPC for random operations. */ err: if (err == -EDEADLK) { eb_release_vmas(eb, false); err = i915_gem_ww_ctx_backoff(&eb->ww); if (!err) goto repeat_validate; } if (err == -EAGAIN) goto repeat; out: if (have_copy) { const unsigned int count = eb->buffer_count; unsigned int i; for (i = 0; i < count; i++) { const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; struct drm_i915_gem_relocation_entry *relocs; if (!entry->relocation_count) continue; relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); kvfree(relocs); } } return err; } static int eb_relocate_parse(struct i915_execbuffer *eb) { int err; bool throttle = true; retry: err = eb_pin_engine(eb, throttle); if (err) { if (err != -EDEADLK) return err; goto err; } /* only throttle once, even if we didn't need to throttle */ throttle = false; err = eb_validate_vmas(eb); if (err == -EAGAIN) goto slow; else if (err) goto err; /* The objects are in their final locations, apply the relocations. */ if (eb->args->flags & __EXEC_HAS_RELOC) { struct eb_vma *ev; list_for_each_entry(ev, &eb->relocs, reloc_link) { err = eb_relocate_vma(eb, ev); if (err) break; } if (err == -EDEADLK) goto err; else if (err) goto slow; } if (!err) err = eb_parse(eb); err: if (err == -EDEADLK) { eb_release_vmas(eb, false); err = i915_gem_ww_ctx_backoff(&eb->ww); if (!err) goto retry; } return err; slow: err = eb_relocate_parse_slow(eb); if (err) /* * If the user expects the execobject.offset and * reloc.presumed_offset to be an exact match, * as for using NO_RELOC, then we cannot update * the execobject.offset until we have completed * relocation. */ eb->args->flags &= ~__EXEC_HAS_RELOC; return err; } /* * Using two helper loops for the order of which requests / batches are created * and added the to backend. Requests are created in order from the parent to * the last child. Requests are added in the reverse order, from the last child * to parent. This is done for locking reasons as the timeline lock is acquired * during request creation and released when the request is added to the * backend. To make lockdep happy (see intel_context_timeline_lock) this must be * the ordering. */ #define for_each_batch_create_order(_eb, _i) \ for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) #define for_each_batch_add_order(_eb, _i) \ BUILD_BUG_ON(!typecheck(int, _i)); \ for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) static struct i915_request * eb_find_first_request_added(struct i915_execbuffer *eb) { int i; for_each_batch_add_order(eb, i) if (eb->requests[i]) return eb->requests[i]; GEM_BUG_ON("Request not found"); return NULL; } #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ static int eb_capture_stage(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i = count, j; while (i--) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; unsigned int flags = ev->flags; if (!(flags & EXEC_OBJECT_CAPTURE)) continue; if (i915_gem_context_is_recoverable(eb->gem_context) && (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) return -EINVAL; for_each_batch_create_order(eb, j) { struct i915_capture_list *capture; capture = kmalloc(sizeof(*capture), GFP_KERNEL); if (!capture) continue; capture->next = eb->capture_lists[j]; capture->vma_res = i915_vma_resource_get(vma->resource); eb->capture_lists[j] = capture; } } return 0; } /* Commit once we're in the critical path */ static void eb_capture_commit(struct i915_execbuffer *eb) { unsigned int j; for_each_batch_create_order(eb, j) { struct i915_request *rq = eb->requests[j]; if (!rq) break; rq->capture_list = eb->capture_lists[j]; eb->capture_lists[j] = NULL; } } /* * Release anything that didn't get committed due to errors. * The capture_list will otherwise be freed at request retire. */ static void eb_capture_release(struct i915_execbuffer *eb) { unsigned int j; for_each_batch_create_order(eb, j) { if (eb->capture_lists[j]) { i915_request_free_capture_list(eb->capture_lists[j]); eb->capture_lists[j] = NULL; } } } static void eb_capture_list_clear(struct i915_execbuffer *eb) { memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); } #else static int eb_capture_stage(struct i915_execbuffer *eb) { return 0; } static void eb_capture_commit(struct i915_execbuffer *eb) { } static void eb_capture_release(struct i915_execbuffer *eb) { } static void eb_capture_list_clear(struct i915_execbuffer *eb) { } #endif static int eb_move_to_gpu(struct i915_execbuffer *eb) { const unsigned int count = eb->buffer_count; unsigned int i = count; int err = 0, j; while (i--) { struct eb_vma *ev = &eb->vma[i]; struct i915_vma *vma = ev->vma; unsigned int flags = ev->flags; struct drm_i915_gem_object *obj = vma->obj; assert_vma_held(vma); /* * If the GPU is not _reading_ through the CPU cache, we need * to make sure that any writes (both previous GPU writes from * before a change in snooping levels and normal CPU writes) * caught in that cache are flushed to main memory. * * We want to say * obj->cache_dirty && * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) * but gcc's optimiser doesn't handle that as well and emits * two jumps instead of one. Maybe one day... * * FIXME: There is also sync flushing in set_pages(), which * serves a different purpose(some of the time at least). * * We should consider: * * 1. Rip out the async flush code. * * 2. Or make the sync flushing use the async clflush path * using mandatory fences underneath. Currently the below * async flush happens after we bind the object. */ if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { if (i915_gem_clflush_object(obj, 0)) flags &= ~EXEC_OBJECT_ASYNC; } /* We only need to await on the first request */ if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { err = i915_request_await_object (eb_find_first_request_added(eb), obj, flags & EXEC_OBJECT_WRITE); } for_each_batch_add_order(eb, j) { if (err) break; if (!eb->requests[j]) continue; err = _i915_vma_move_to_active(vma, eb->requests[j], j ? NULL : eb->composite_fence ? eb->composite_fence : &eb->requests[j]->fence, flags | __EXEC_OBJECT_NO_RESERVE | __EXEC_OBJECT_NO_REQUEST_AWAIT); } } #ifdef CONFIG_MMU_NOTIFIER if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { read_lock(&eb->i915->mm.notifier_lock); /* * count is always at least 1, otherwise __EXEC_USERPTR_USED * could not have been set */ for (i = 0; i < count; i++) { struct eb_vma *ev = &eb->vma[i]; struct drm_i915_gem_object *obj = ev->vma->obj; if (!i915_gem_object_is_userptr(obj)) continue; err = i915_gem_object_userptr_submit_done(obj); if (err) break; } read_unlock(&eb->i915->mm.notifier_lock); } #endif if (unlikely(err)) goto err_skip; /* Unconditionally flush any chipset caches (for streaming writes). */ intel_gt_chipset_flush(eb->gt); eb_capture_commit(eb); return 0; err_skip: for_each_batch_create_order(eb, j) { if (!eb->requests[j]) break; i915_request_set_error_once(eb->requests[j], err); } return err; } static int i915_gem_check_execbuffer(struct drm_i915_private *i915, struct drm_i915_gem_execbuffer2 *exec) { if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) return -EINVAL; /* Kernel clipping was a DRI1 misfeature */ if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | I915_EXEC_USE_EXTENSIONS))) { if (exec->num_cliprects || exec->cliprects_ptr) return -EINVAL; } if (exec->DR4 == 0xffffffff) { drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); exec->DR4 = 0; } if (exec->DR1 || exec->DR4) return -EINVAL; if ((exec->batch_start_offset | exec->batch_len) & 0x7) return -EINVAL; return 0; } static int i915_reset_gen7_sol_offsets(struct i915_request *rq) { u32 *cs; int i; if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) { drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); return -EINVAL; } cs = intel_ring_begin(rq, 4 * 2 + 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_LOAD_REGISTER_IMM(4); for (i = 0; i < 4; i++) { *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); *cs++ = 0; } *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static struct i915_vma * shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj, struct i915_address_space *vm, unsigned int flags) { struct i915_vma *vma; int err; vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) return vma; err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); if (err) return ERR_PTR(err); return vma; } static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) { /* * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure * batch" bit. Hence we need to pin secure batches into the global gtt. * hsw should have this fixed, but bdw mucks it up again. */ if (eb->batch_flags & I915_DISPATCH_SECURE) return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); return NULL; } static int eb_parse(struct i915_execbuffer *eb) { struct drm_i915_private *i915 = eb->i915; struct intel_gt_buffer_pool_node *pool = eb->batch_pool; struct i915_vma *shadow, *trampoline, *batch; unsigned long len; int err; if (!eb_use_cmdparser(eb)) { batch = eb_dispatch_secure(eb, eb->batches[0]->vma); if (IS_ERR(batch)) return PTR_ERR(batch); goto secure_batch; } if (intel_context_is_parallel(eb->context)) return -EINVAL; len = eb->batch_len[0]; if (!CMDPARSER_USES_GGTT(eb->i915)) { /* * ppGTT backed shadow buffers must be mapped RO, to prevent * post-scan tampering */ if (!eb->context->vm->has_read_only) { drm_dbg(&i915->drm, "Cannot prevent post-scan tampering without RO capable vm\n"); return -EINVAL; } } else { len += I915_CMD_PARSER_TRAMPOLINE_SIZE; } if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ return -EINVAL; if (!pool) { pool = intel_gt_get_buffer_pool(eb->gt, len, I915_MAP_WB); if (IS_ERR(pool)) return PTR_ERR(pool); eb->batch_pool = pool; } err = i915_gem_object_lock(pool->obj, &eb->ww); if (err) return err; shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); if (IS_ERR(shadow)) return PTR_ERR(shadow); intel_gt_buffer_pool_mark_used(pool); i915_gem_object_set_readonly(shadow->obj); shadow->private = pool; trampoline = NULL; if (CMDPARSER_USES_GGTT(eb->i915)) { trampoline = shadow; shadow = shadow_batch_pin(eb, pool->obj, &eb->gt->ggtt->vm, PIN_GLOBAL); if (IS_ERR(shadow)) return PTR_ERR(shadow); shadow->private = pool; eb->batch_flags |= I915_DISPATCH_SECURE; } batch = eb_dispatch_secure(eb, shadow); if (IS_ERR(batch)) return PTR_ERR(batch); err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); if (err) return err; err = intel_engine_cmd_parser(eb->context->engine, eb->batches[0]->vma, eb->batch_start_offset, eb->batch_len[0], shadow, trampoline); if (err) return err; eb->batches[0] = &eb->vma[eb->buffer_count++]; eb->batches[0]->vma = i915_vma_get(shadow); eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; eb->trampoline = trampoline; eb->batch_start_offset = 0; secure_batch: if (batch) { if (intel_context_is_parallel(eb->context)) return -EINVAL; eb->batches[0] = &eb->vma[eb->buffer_count++]; eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; eb->batches[0]->vma = i915_vma_get(batch); } return 0; } static int eb_request_submit(struct i915_execbuffer *eb, struct i915_request *rq, struct i915_vma *batch, u64 batch_len) { int err; if (intel_context_nopreempt(rq->context)) __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { err = i915_reset_gen7_sol_offsets(rq); if (err) return err; } /* * After we completed waiting for other engines (using HW semaphores) * then we can signal that this request/batch is ready to run. This * allows us to determine if the batch is still waiting on the GPU * or actually running by checking the breadcrumb. */ if (rq->context->engine->emit_init_breadcrumb) { err = rq->context->engine->emit_init_breadcrumb(rq); if (err) return err; } err = rq->context->engine->emit_bb_start(rq, i915_vma_offset(batch) + eb->batch_start_offset, batch_len, eb->batch_flags); if (err) return err; if (eb->trampoline) { GEM_BUG_ON(intel_context_is_parallel(rq->context)); GEM_BUG_ON(eb->batch_start_offset); err = rq->context->engine->emit_bb_start(rq, i915_vma_offset(eb->trampoline) + batch_len, 0, 0); if (err) return err; } return 0; } static int eb_submit(struct i915_execbuffer *eb) { unsigned int i; int err; err = eb_move_to_gpu(eb); for_each_batch_create_order(eb, i) { if (!eb->requests[i]) break; trace_i915_request_queue(eb->requests[i], eb->batch_flags); if (!err) err = eb_request_submit(eb, eb->requests[i], eb->batches[i]->vma, eb->batch_len[i]); } return err; } /* * Find one BSD ring to dispatch the corresponding BSD command. * The engine index is returned. */ static unsigned int gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, struct drm_file *file) { struct drm_i915_file_private *file_priv = file->driver_priv; /* Check whether the file_priv has already selected one ring. */ if ((int)file_priv->bsd_engine < 0) file_priv->bsd_engine = get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]); return file_priv->bsd_engine; } static const enum intel_engine_id user_ring_map[] = { [I915_EXEC_DEFAULT] = RCS0, [I915_EXEC_RENDER] = RCS0, [I915_EXEC_BLT] = BCS0, [I915_EXEC_BSD] = VCS0, [I915_EXEC_VEBOX] = VECS0 }; static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) { struct intel_ring *ring = ce->ring; struct intel_timeline *tl = ce->timeline; struct i915_request *rq; /* * Completely unscientific finger-in-the-air estimates for suitable * maximum user request size (to avoid blocking) and then backoff. */ if (intel_ring_update_space(ring) >= PAGE_SIZE) return NULL; /* * Find a request that after waiting upon, there will be at least half * the ring available. The hysteresis allows us to compete for the * shared ring and should mean that we sleep less often prior to * claiming our resources, but not so long that the ring completely * drains before we can submit our next request. */ list_for_each_entry(rq, &tl->requests, link) { if (rq->ring != ring) continue; if (__intel_ring_space(rq->postfix, ring->emit, ring->size) > ring->size / 2) break; } if (&rq->link == &tl->requests) return NULL; /* weird, we will check again later for real */ return i915_request_get(rq); } static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, bool throttle) { struct intel_timeline *tl; struct i915_request *rq = NULL; /* * Take a local wakeref for preparing to dispatch the execbuf as * we expect to access the hardware fairly frequently in the * process, and require the engine to be kept awake between accesses. * Upon dispatch, we acquire another prolonged wakeref that we hold * until the timeline is idle, which in turn releases the wakeref * taken on the engine, and the parent device. */ tl = intel_context_timeline_lock(ce); if (IS_ERR(tl)) return PTR_ERR(tl); intel_context_enter(ce); if (throttle) rq = eb_throttle(eb, ce); intel_context_timeline_unlock(tl); if (rq) { #ifdef __linux__ bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; #else bool nonblock = eb->file->filp->f_flag & FNONBLOCK; #endif long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, timeout) < 0) { i915_request_put(rq); /* * Error path, cannot use intel_context_timeline_lock as * that is user interruptable and this clean up step * must be done. */ mutex_lock(&ce->timeline->mutex); intel_context_exit(ce); mutex_unlock(&ce->timeline->mutex); if (nonblock) return -EWOULDBLOCK; else return -EINTR; } i915_request_put(rq); } return 0; } static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) { struct intel_context *ce = eb->context, *child; int err; int i = 0, j = 0; GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); if (unlikely(intel_context_is_banned(ce))) return -EIO; /* * Pinning the contexts may generate requests in order to acquire * GGTT space, so do this first before we reserve a seqno for * ourselves. */ err = intel_context_pin_ww(ce, &eb->ww); if (err) return err; for_each_child(ce, child) { err = intel_context_pin_ww(child, &eb->ww); GEM_BUG_ON(err); /* perma-pinned should incr a counter */ } for_each_child(ce, child) { err = eb_pin_timeline(eb, child, throttle); if (err) goto unwind; ++i; } err = eb_pin_timeline(eb, ce, throttle); if (err) goto unwind; eb->args->flags |= __EXEC_ENGINE_PINNED; return 0; unwind: for_each_child(ce, child) { if (j++ < i) { mutex_lock(&child->timeline->mutex); intel_context_exit(child); mutex_unlock(&child->timeline->mutex); } } for_each_child(ce, child) intel_context_unpin(child); intel_context_unpin(ce); return err; } static void eb_unpin_engine(struct i915_execbuffer *eb) { struct intel_context *ce = eb->context, *child; if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) return; eb->args->flags &= ~__EXEC_ENGINE_PINNED; for_each_child(ce, child) { mutex_lock(&child->timeline->mutex); intel_context_exit(child); mutex_unlock(&child->timeline->mutex); intel_context_unpin(child); } mutex_lock(&ce->timeline->mutex); intel_context_exit(ce); mutex_unlock(&ce->timeline->mutex); intel_context_unpin(ce); } static unsigned int eb_select_legacy_ring(struct i915_execbuffer *eb) { struct drm_i915_private *i915 = eb->i915; struct drm_i915_gem_execbuffer2 *args = eb->args; unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; if (user_ring_id != I915_EXEC_BSD && (args->flags & I915_EXEC_BSD_MASK)) { drm_dbg(&i915->drm, "execbuf with non bsd ring but with invalid " "bsd dispatch flags: %d\n", (int)(args->flags)); return -1; } if (user_ring_id == I915_EXEC_BSD && i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) { unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; if (bsd_idx == I915_EXEC_BSD_DEFAULT) { bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); } else if (bsd_idx >= I915_EXEC_BSD_RING1 && bsd_idx <= I915_EXEC_BSD_RING2) { bsd_idx >>= I915_EXEC_BSD_SHIFT; bsd_idx--; } else { drm_dbg(&i915->drm, "execbuf with unknown bsd ring: %u\n", bsd_idx); return -1; } return _VCS(bsd_idx); } if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", user_ring_id); return -1; } return user_ring_map[user_ring_id]; } static int eb_select_engine(struct i915_execbuffer *eb) { struct intel_context *ce, *child; struct intel_gt *gt; unsigned int idx; int err; if (i915_gem_context_user_engines(eb->gem_context)) idx = eb->args->flags & I915_EXEC_RING_MASK; else idx = eb_select_legacy_ring(eb); ce = i915_gem_context_get_engine(eb->gem_context, idx); if (IS_ERR(ce)) return PTR_ERR(ce); if (intel_context_is_parallel(ce)) { if (eb->buffer_count < ce->parallel.number_children + 1) { intel_context_put(ce); return -EINVAL; } if (eb->batch_start_offset || eb->args->batch_len) { intel_context_put(ce); return -EINVAL; } } eb->num_batches = ce->parallel.number_children + 1; gt = ce->engine->gt; for_each_child(ce, child) intel_context_get(child); intel_gt_pm_get(gt); /* * Keep GT0 active on MTL so that i915_vma_parked() doesn't * free VMAs while execbuf ioctl is validating VMAs. */ if (gt->info.id) intel_gt_pm_get(to_gt(gt->i915)); if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { err = intel_context_alloc_state(ce); if (err) goto err; } for_each_child(ce, child) { if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { err = intel_context_alloc_state(child); if (err) goto err; } } /* * ABI: Before userspace accesses the GPU (e.g. execbuffer), report * EIO if the GPU is already wedged. */ err = intel_gt_terminally_wedged(ce->engine->gt); if (err) goto err; if (!i915_vm_tryget(ce->vm)) { err = -ENOENT; goto err; } eb->context = ce; eb->gt = ce->engine->gt; /* * Make sure engine pool stays alive even if we call intel_context_put * during ww handling. The pool is destroyed when last pm reference * is dropped, which breaks our -EDEADLK handling. */ return err; err: if (gt->info.id) intel_gt_pm_put(to_gt(gt->i915)); intel_gt_pm_put(gt); for_each_child(ce, child) intel_context_put(child); intel_context_put(ce); return err; } static void eb_put_engine(struct i915_execbuffer *eb) { struct intel_context *child; i915_vm_put(eb->context->vm); /* * This works in conjunction with eb_select_engine() to prevent * i915_vma_parked() from interfering while execbuf validates vmas. */ if (eb->gt->info.id) intel_gt_pm_put(to_gt(eb->gt->i915)); intel_gt_pm_put(eb->gt); for_each_child(eb->context, child) intel_context_put(child); intel_context_put(eb->context); } static void __free_fence_array(struct eb_fence *fences, unsigned int n) { while (n--) { drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); dma_fence_put(fences[n].dma_fence); dma_fence_chain_free(fences[n].chain_fence); } kvfree(fences); } static int add_timeline_fence_array(struct i915_execbuffer *eb, const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) { struct drm_i915_gem_exec_fence __user *user_fences; u64 __user *user_values; struct eb_fence *f; u64 nfences; int err = 0; nfences = timeline_fences->fence_count; if (!nfences) return 0; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (nfences > min_t(unsigned long, ULONG_MAX / sizeof(*user_fences), SIZE_MAX / sizeof(*f)) - eb->num_fences) return -EINVAL; user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); if (!access_ok(user_fences, nfences * sizeof(*user_fences))) return -EFAULT; user_values = u64_to_user_ptr(timeline_fences->values_ptr); if (!access_ok(user_values, nfences * sizeof(*user_values))) return -EFAULT; #ifdef __linux__ f = krealloc(eb->fences, (eb->num_fences + nfences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; #else f = kmalloc((eb->num_fences + nfences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); kfree(eb->fences); #endif eb->fences = f; f += eb->num_fences; #ifdef notyet BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); #endif while (nfences--) { struct drm_i915_gem_exec_fence user_fence; struct drm_syncobj *syncobj; struct dma_fence *fence = NULL; u64 point; if (__copy_from_user(&user_fence, user_fences++, sizeof(user_fence))) return -EFAULT; if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) return -EINVAL; if (__get_user(point, user_values++)) return -EFAULT; syncobj = drm_syncobj_find(eb->file, user_fence.handle); if (!syncobj) { drm_dbg(&eb->i915->drm, "Invalid syncobj handle provided\n"); return -ENOENT; } fence = drm_syncobj_fence_get(syncobj); if (!fence && user_fence.flags && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_dbg(&eb->i915->drm, "Syncobj handle has no fence\n"); drm_syncobj_put(syncobj); return -EINVAL; } if (fence) err = dma_fence_chain_find_seqno(&fence, point); if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_dbg(&eb->i915->drm, "Syncobj handle missing requested point %llu\n", point); dma_fence_put(fence); drm_syncobj_put(syncobj); return err; } /* * A point might have been signaled already and * garbage collected from the timeline. In this case * just ignore the point and carry on. */ if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { drm_syncobj_put(syncobj); continue; } /* * For timeline syncobjs we need to preallocate chains for * later signaling. */ if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { /* * Waiting and signaling the same point (when point != * 0) would break the timeline. */ if (user_fence.flags & I915_EXEC_FENCE_WAIT) { drm_dbg(&eb->i915->drm, "Trying to wait & signal the same timeline point.\n"); dma_fence_put(fence); drm_syncobj_put(syncobj); return -EINVAL; } f->chain_fence = dma_fence_chain_alloc(); if (!f->chain_fence) { drm_syncobj_put(syncobj); dma_fence_put(fence); return -ENOMEM; } } else { f->chain_fence = NULL; } f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); f->dma_fence = fence; f->value = point; f++; eb->num_fences++; } return 0; } static int add_fence_array(struct i915_execbuffer *eb) { struct drm_i915_gem_execbuffer2 *args = eb->args; struct drm_i915_gem_exec_fence __user *user; unsigned long num_fences = args->num_cliprects; struct eb_fence *f; if (!(args->flags & I915_EXEC_FENCE_ARRAY)) return 0; if (!num_fences) return 0; /* Check multiplication overflow for access_ok() and kvmalloc_array() */ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); if (num_fences > min_t(unsigned long, ULONG_MAX / sizeof(*user), SIZE_MAX / sizeof(*f) - eb->num_fences)) return -EINVAL; user = u64_to_user_ptr(args->cliprects_ptr); if (!access_ok(user, num_fences * sizeof(*user))) return -EFAULT; #ifdef __linux__ f = krealloc(eb->fences, (eb->num_fences + num_fences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; #else f = kmalloc((eb->num_fences + num_fences) * sizeof(*f), __GFP_NOWARN | GFP_KERNEL); if (!f) return -ENOMEM; memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); kfree(eb->fences); #endif eb->fences = f; f += eb->num_fences; while (num_fences--) { struct drm_i915_gem_exec_fence user_fence; struct drm_syncobj *syncobj; struct dma_fence *fence = NULL; if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) return -EFAULT; if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) return -EINVAL; syncobj = drm_syncobj_find(eb->file, user_fence.handle); if (!syncobj) { drm_dbg(&eb->i915->drm, "Invalid syncobj handle provided\n"); return -ENOENT; } if (user_fence.flags & I915_EXEC_FENCE_WAIT) { fence = drm_syncobj_fence_get(syncobj); if (!fence) { drm_dbg(&eb->i915->drm, "Syncobj handle has no fence\n"); drm_syncobj_put(syncobj); return -EINVAL; } } #ifdef notyet BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); #endif f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); f->dma_fence = fence; f->value = 0; f->chain_fence = NULL; f++; eb->num_fences++; } return 0; } static void put_fence_array(struct eb_fence *fences, int num_fences) { if (fences) __free_fence_array(fences, num_fences); } static int await_fence_array(struct i915_execbuffer *eb, struct i915_request *rq) { unsigned int n; int err; for (n = 0; n < eb->num_fences; n++) { if (!eb->fences[n].dma_fence) continue; err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); if (err < 0) return err; } return 0; } static void signal_fence_array(const struct i915_execbuffer *eb, struct dma_fence * const fence) { unsigned int n; for (n = 0; n < eb->num_fences; n++) { struct drm_syncobj *syncobj; unsigned int flags; syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); if (!(flags & I915_EXEC_FENCE_SIGNAL)) continue; if (eb->fences[n].chain_fence) { drm_syncobj_add_point(syncobj, eb->fences[n].chain_fence, fence, eb->fences[n].value); /* * The chain's ownership is transferred to the * timeline. */ eb->fences[n].chain_fence = NULL; } else { drm_syncobj_replace_fence(syncobj, fence); } } } static int parse_timeline_fences(struct i915_user_extension __user *ext, void *data) { struct i915_execbuffer *eb = data; struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) return -EFAULT; return add_timeline_fence_array(eb, &timeline_fences); } static void retire_requests(struct intel_timeline *tl, struct i915_request *end) { struct i915_request *rq, *rn; list_for_each_entry_safe(rq, rn, &tl->requests, link) if (rq == end || !i915_request_retire(rq)) break; } static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, int err, bool last_parallel) { struct intel_timeline * const tl = i915_request_timeline(rq); struct i915_sched_attr attr = {}; struct i915_request *prev; lockdep_assert_held(&tl->mutex); lockdep_unpin_lock(&tl->mutex, rq->cookie); trace_i915_request_add(rq); prev = __i915_request_commit(rq); /* Check that the context wasn't destroyed before submission */ if (likely(!intel_context_is_closed(eb->context))) { attr = eb->gem_context->sched; } else { /* Serialise with context_close via the add_to_timeline */ i915_request_set_error_once(rq, -ENOENT); __i915_request_skip(rq); err = -ENOENT; /* override any transient errors */ } if (intel_context_is_parallel(eb->context)) { if (err) { __i915_request_skip(rq); set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); } if (last_parallel) set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags); } __i915_request_queue(rq, &attr); /* Try to clean up the client's timeline after submitting the request */ if (prev) retire_requests(tl, prev); mutex_unlock(&tl->mutex); return err; } static int eb_requests_add(struct i915_execbuffer *eb, int err) { int i; /* * We iterate in reverse order of creation to release timeline mutexes in * same order. */ for_each_batch_add_order(eb, i) { struct i915_request *rq = eb->requests[i]; if (!rq) continue; err |= eb_request_add(eb, rq, err, i == 0); } return err; } static const i915_user_extension_fn execbuf_extensions[] = { [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, }; static int parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, struct i915_execbuffer *eb) { if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) return 0; /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot * have another flag also using it at the same time. */ if (eb->args->flags & I915_EXEC_FENCE_ARRAY) return -EINVAL; if (args->num_cliprects != 0) return -EINVAL; return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), execbuf_extensions, ARRAY_SIZE(execbuf_extensions), eb); } static void eb_requests_get(struct i915_execbuffer *eb) { unsigned int i; for_each_batch_create_order(eb, i) { if (!eb->requests[i]) break; i915_request_get(eb->requests[i]); } } static void eb_requests_put(struct i915_execbuffer *eb) { unsigned int i; for_each_batch_create_order(eb, i) { if (!eb->requests[i]) break; i915_request_put(eb->requests[i]); } } static struct sync_file * eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) { struct sync_file *out_fence = NULL; struct dma_fence_array *fence_array; struct dma_fence **fences; unsigned int i; GEM_BUG_ON(!intel_context_is_parent(eb->context)); fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); if (!fences) return ERR_PTR(-ENOMEM); for_each_batch_create_order(eb, i) { fences[i] = &eb->requests[i]->fence; __set_bit(I915_FENCE_FLAG_COMPOSITE, &eb->requests[i]->fence.flags); } fence_array = dma_fence_array_create(eb->num_batches, fences, eb->context->parallel.fence_context, eb->context->parallel.seqno++, false); if (!fence_array) { kfree(fences); return ERR_PTR(-ENOMEM); } /* Move ownership to the dma_fence_array created above */ for_each_batch_create_order(eb, i) dma_fence_get(fences[i]); if (out_fence_fd != -1) { out_fence = sync_file_create(&fence_array->base); /* sync_file now owns fence_arry, drop creation ref */ dma_fence_put(&fence_array->base); if (!out_fence) return ERR_PTR(-ENOMEM); } eb->composite_fence = &fence_array->base; return out_fence; } static struct sync_file * eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, struct dma_fence *in_fence, int out_fence_fd) { struct sync_file *out_fence = NULL; int err; if (unlikely(eb->gem_context->syncobj)) { struct dma_fence *fence; fence = drm_syncobj_fence_get(eb->gem_context->syncobj); err = i915_request_await_dma_fence(rq, fence); dma_fence_put(fence); if (err) return ERR_PTR(err); } if (in_fence) { if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) err = i915_request_await_execution(rq, in_fence); else err = i915_request_await_dma_fence(rq, in_fence); if (err < 0) return ERR_PTR(err); } if (eb->fences) { err = await_fence_array(eb, rq); if (err) return ERR_PTR(err); } if (intel_context_is_parallel(eb->context)) { out_fence = eb_composite_fence_create(eb, out_fence_fd); if (IS_ERR(out_fence)) return ERR_PTR(-ENOMEM); } else if (out_fence_fd != -1) { out_fence = sync_file_create(&rq->fence); if (!out_fence) return ERR_PTR(-ENOMEM); } return out_fence; } static struct intel_context * eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) { struct intel_context *child; if (likely(context_number == 0)) return eb->context; for_each_child(eb->context, child) if (!--context_number) return child; GEM_BUG_ON("Context not found"); return NULL; } static struct sync_file * eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, int out_fence_fd) { struct sync_file *out_fence = NULL; unsigned int i; for_each_batch_create_order(eb, i) { /* Allocate a request for this batch buffer nice and early. */ eb->requests[i] = i915_request_create(eb_find_context(eb, i)); if (IS_ERR(eb->requests[i])) { out_fence = ERR_CAST(eb->requests[i]); eb->requests[i] = NULL; return out_fence; } /* * Only the first request added (committed to backend) has to * take the in fences into account as all subsequent requests * will have fences inserted inbetween them. */ if (i + 1 == eb->num_batches) { out_fence = eb_fences_add(eb, eb->requests[i], in_fence, out_fence_fd); if (IS_ERR(out_fence)) return out_fence; } /* * Not really on stack, but we don't want to call * kfree on the batch_snapshot when we put it, so use the * _onstack interface. */ if (eb->batches[i]->vma) eb->requests[i]->batch_res = i915_vma_resource_get(eb->batches[i]->vma->resource); if (eb->batch_pool) { GEM_BUG_ON(intel_context_is_parallel(eb->context)); intel_gt_buffer_pool_mark_active(eb->batch_pool, eb->requests[i]); } } return out_fence; } static int i915_gem_do_execbuffer(struct drm_device *dev, struct drm_file *file, struct drm_i915_gem_execbuffer2 *args, struct drm_i915_gem_exec_object2 *exec) { struct drm_i915_private *i915 = to_i915(dev); struct i915_execbuffer eb; struct dma_fence *in_fence = NULL; struct sync_file *out_fence = NULL; int out_fence_fd = -1; int err; BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS); eb.i915 = i915; eb.file = file; eb.args = args; if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) args->flags |= __EXEC_HAS_RELOC; eb.exec = exec; eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); eb.vma[0].vma = NULL; eb.batch_pool = NULL; eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; reloc_cache_init(&eb.reloc_cache, eb.i915); eb.buffer_count = args->buffer_count; eb.batch_start_offset = args->batch_start_offset; eb.trampoline = NULL; eb.fences = NULL; eb.num_fences = 0; eb_capture_list_clear(&eb); memset(eb.requests, 0, sizeof(struct i915_request *) * ARRAY_SIZE(eb.requests)); eb.composite_fence = NULL; eb.batch_flags = 0; if (args->flags & I915_EXEC_SECURE) { if (GRAPHICS_VER(i915) >= 11) return -ENODEV; /* Return -EPERM to trigger fallback code on old binaries. */ if (!HAS_SECURE_BATCHES(i915)) return -EPERM; if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) return -EPERM; eb.batch_flags |= I915_DISPATCH_SECURE; } if (args->flags & I915_EXEC_IS_PINNED) eb.batch_flags |= I915_DISPATCH_PINNED; err = parse_execbuf2_extensions(args, &eb); if (err) goto err_ext; err = add_fence_array(&eb); if (err) goto err_ext; #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) if (args->flags & IN_FENCES) { if ((args->flags & IN_FENCES) == IN_FENCES) return -EINVAL; in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); if (!in_fence) { err = -EINVAL; goto err_ext; } } #undef IN_FENCES if (args->flags & I915_EXEC_FENCE_OUT) { out_fence_fd = get_unused_fd_flags(O_CLOEXEC); if (out_fence_fd < 0) { err = out_fence_fd; goto err_in_fence; } } err = eb_create(&eb); if (err) goto err_out_fence; GEM_BUG_ON(!eb.lut_size); err = eb_select_context(&eb); if (unlikely(err)) goto err_destroy; err = eb_select_engine(&eb); if (unlikely(err)) goto err_context; err = eb_lookup_vmas(&eb); if (err) { eb_release_vmas(&eb, true); goto err_engine; } i915_gem_ww_ctx_init(&eb.ww, true); err = eb_relocate_parse(&eb); if (err) { /* * If the user expects the execobject.offset and * reloc.presumed_offset to be an exact match, * as for using NO_RELOC, then we cannot update * the execobject.offset until we have completed * relocation. */ args->flags &= ~__EXEC_HAS_RELOC; goto err_vma; } ww_acquire_done(&eb.ww.ctx); err = eb_capture_stage(&eb); if (err) goto err_vma; out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); if (IS_ERR(out_fence)) { err = PTR_ERR(out_fence); out_fence = NULL; if (eb.requests[0]) goto err_request; else goto err_vma; } err = eb_submit(&eb); err_request: eb_requests_get(&eb); err = eb_requests_add(&eb, err); if (eb.fences) signal_fence_array(&eb, eb.composite_fence ? eb.composite_fence : &eb.requests[0]->fence); if (unlikely(eb.gem_context->syncobj)) { drm_syncobj_replace_fence(eb.gem_context->syncobj, eb.composite_fence ? eb.composite_fence : &eb.requests[0]->fence); } if (out_fence) { if (err == 0) { fd_install(out_fence_fd, out_fence->file); args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ args->rsvd2 |= (u64)out_fence_fd << 32; out_fence_fd = -1; } else { fput(out_fence->file); } } if (!out_fence && eb.composite_fence) dma_fence_put(eb.composite_fence); eb_requests_put(&eb); err_vma: eb_release_vmas(&eb, true); WARN_ON(err == -EDEADLK); i915_gem_ww_ctx_fini(&eb.ww); if (eb.batch_pool) intel_gt_buffer_pool_put(eb.batch_pool); err_engine: eb_put_engine(&eb); err_context: i915_gem_context_put(eb.gem_context); err_destroy: eb_destroy(&eb); err_out_fence: if (out_fence_fd != -1) put_unused_fd(out_fence_fd); err_in_fence: dma_fence_put(in_fence); err_ext: put_fence_array(eb.fences, eb.num_fences); return err; } static size_t eb_element_size(void) { return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); } static bool check_buffer_count(size_t count) { const size_t sz = eb_element_size(); /* * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup * array size (see eb_create()). Otherwise, we can accept an array as * large as can be addressed (though use large arrays at your peril)! */ return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); } int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_execbuffer2 *args = data; struct drm_i915_gem_exec_object2 *exec2_list; const size_t count = args->buffer_count; int err; if (!check_buffer_count(count)) { drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); return -EINVAL; } err = i915_gem_check_execbuffer(i915, args); if (err) return err; /* Allocate extra slots for use by the command parser */ exec2_list = kvmalloc_array(count + 2, eb_element_size(), __GFP_NOWARN | GFP_KERNEL); if (exec2_list == NULL) { drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", count); return -ENOMEM; } if (copy_from_user(exec2_list, u64_to_user_ptr(args->buffers_ptr), sizeof(*exec2_list) * count)) { drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); kvfree(exec2_list); return -EFAULT; } err = i915_gem_do_execbuffer(dev, file, args, exec2_list); /* * Now that we have begun execution of the batchbuffer, we ignore * any new error after this point. Also given that we have already * updated the associated relocations, we try to write out the current * object locations irrespective of any error. */ if (args->flags & __EXEC_HAS_RELOC) { struct drm_i915_gem_exec_object2 __user *user_exec_list = u64_to_user_ptr(args->buffers_ptr); unsigned int i; /* Copy the new buffer offsets back to the user's exec list. */ /* * Note: count * sizeof(*user_exec_list) does not overflow, * because we checked 'count' in check_buffer_count(). * * And this range already got effectively checked earlier * when we did the "copy_from_user()" above. */ if (!user_write_access_begin(user_exec_list, count * sizeof(*user_exec_list))) goto end; for (i = 0; i < args->buffer_count; i++) { if (!(exec2_list[i].offset & UPDATE)) continue; exec2_list[i].offset = gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); unsafe_put_user(exec2_list[i].offset, &user_exec_list[i].offset, end_user); } end_user: user_write_access_end(); end:; } args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; kvfree(exec2_list); return err; }