// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "i915_selftest.h" #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_region.h" #include "gen8_engine_cs.h" #include "i915_gem_ww.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_context.h" #include "intel_gt.h" #include "intel_ring.h" #include "selftests/igt_flush_test.h" #include "selftests/i915_random.h" static void vma_set_qw(struct i915_vma *vma, u64 addr, u64 val) { GEM_BUG_ON(addr < i915_vma_offset(vma)); GEM_BUG_ON(addr >= i915_vma_offset(vma) + i915_vma_size(vma) + sizeof(val)); memset64(page_mask_bits(vma->obj->mm.mapping) + (addr - i915_vma_offset(vma)), val, 1); } static int pte_tlbinv(struct intel_context *ce, struct i915_vma *va, struct i915_vma *vb, u64 align, void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length), u64 length, struct rnd_state *prng) { const unsigned int pat_index = i915_gem_get_pat_index(ce->vm->i915, I915_CACHE_NONE); struct drm_i915_gem_object *batch; struct drm_mm_node vb_node; struct i915_request *rq; struct i915_vma *vma; u64 addr; int err; u32 *cs; batch = i915_gem_object_create_internal(ce->vm->i915, 4096); if (IS_ERR(batch)) return PTR_ERR(batch); vma = i915_vma_instance(batch, ce->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out; } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) goto out; /* Pin va at random but aligned offset after vma */ addr = round_up(vma->node.start + vma->node.size, align); /* MI_CONDITIONAL_BATCH_BUFFER_END limits address to 48b */ addr = igt_random_offset(prng, addr, min(ce->vm->total, BIT_ULL(48)), va->size, align); err = i915_vma_pin(va, 0, 0, addr | PIN_OFFSET_FIXED | PIN_USER); if (err) { pr_err("Cannot pin at %llx+%llx\n", addr, va->size); goto out; } GEM_BUG_ON(i915_vma_offset(va) != addr); if (vb != va) { vb_node = vb->node; vb->node = va->node; /* overwrites the _same_ PTE */ } /* * Now choose random dword at the 1st pinned page. * * SZ_64K pages on dg1 require that the whole PT be marked * containing 64KiB entries. So we make sure that vma * covers the whole PT, despite being randomly aligned to 64KiB * and restrict our sampling to the 2MiB PT within where * we know that we will be using 64KiB pages. */ if (align == SZ_64K) addr = round_up(addr, SZ_2M); addr = igt_random_offset(prng, addr, addr + align, 8, 8); if (va != vb) pr_info("%s(%s): Sampling %llx, with alignment %llx, using PTE size %x (phys %x, sg %x), invalidate:%llx+%llx\n", ce->engine->name, va->obj->mm.region->name ?: "smem", addr, align, va->resource->page_sizes_gtt, va->page_sizes.phys, va->page_sizes.sg, addr & -length, length); cs = i915_gem_object_pin_map_unlocked(batch, I915_MAP_WC); *cs++ = MI_NOOP; /* for later termination */ /* * Sample the target to see if we spot the updated backing store. * Gen8 VCS compares immediate value with bitwise-and of two * consecutive DWORDS pointed by addr, other gen/engines compare value * with DWORD pointed by addr. Moreover we want to exercise DWORD size * invalidations. To fulfill all these requirements below values * have been chosen. */ *cs++ = MI_CONDITIONAL_BATCH_BUFFER_END | MI_DO_COMPARE | 2; *cs++ = 0; /* break if *addr == 0 */ *cs++ = lower_32_bits(addr); *cs++ = upper_32_bits(addr); vma_set_qw(va, addr, -1); vma_set_qw(vb, addr, 0); /* Keep sampling until we get bored */ *cs++ = MI_BATCH_BUFFER_START | BIT(8) | 1; *cs++ = lower_32_bits(i915_vma_offset(vma)); *cs++ = upper_32_bits(i915_vma_offset(vma)); i915_gem_object_flush_map(batch); rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_va; } err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), 0, 0); if (err) { i915_request_add(rq); goto out_va; } i915_request_get(rq); i915_request_add(rq); /* Short sleep to sanitycheck the batch is spinning before we begin */ msleep(10); if (va == vb) { if (!i915_request_completed(rq)) { pr_err("%s(%s): Semaphore sanitycheck failed %llx, with alignment %llx, using PTE size %x (phys %x, sg %x)\n", ce->engine->name, va->obj->mm.region->name ?: "smem", addr, align, va->resource->page_sizes_gtt, va->page_sizes.phys, va->page_sizes.sg); err = -EIO; } } else if (!i915_request_completed(rq)) { struct i915_vma_resource vb_res = { .bi.pages = vb->obj->mm.pages, .bi.page_sizes = vb->obj->mm.page_sizes, .start = i915_vma_offset(vb), .vma_size = i915_vma_size(vb) }; unsigned int pte_flags = 0; /* Flip the PTE between A and B */ if (i915_gem_object_is_lmem(vb->obj)) pte_flags |= PTE_LM; ce->vm->insert_entries(ce->vm, &vb_res, pat_index, pte_flags); /* Flush the PTE update to concurrent HW */ tlbinv(ce->vm, addr & -length, length); if (wait_for(i915_request_completed(rq), HZ / 2)) { pr_err("%s: Request did not complete; the COND_BBE did not read the updated PTE\n", ce->engine->name); err = -EINVAL; } } else { pr_err("Spinner ended unexpectedly\n"); err = -EIO; } i915_request_put(rq); cs = page_mask_bits(batch->mm.mapping); *cs = MI_BATCH_BUFFER_END; wmb(); out_va: if (vb != va) vb->node = vb_node; i915_vma_unpin(va); if (i915_vma_unbind_unlocked(va)) err = -EIO; out: i915_gem_object_put(batch); return err; } static struct drm_i915_gem_object *create_lmem(struct intel_gt *gt) { struct intel_memory_region *mr = gt->i915->mm.regions[INTEL_REGION_LMEM_0]; resource_size_t size = SZ_1G; /* * Allocation of largest possible page size allows to test all types * of pages. To succeed with both allocations, especially in case of Small * BAR, try to allocate no more than quarter of mappable memory. */ if (mr && size > resource_size(&mr->io) / 4) size = resource_size(&mr->io) / 4; return i915_gem_object_create_lmem(gt->i915, size, I915_BO_ALLOC_CONTIGUOUS); } static struct drm_i915_gem_object *create_smem(struct intel_gt *gt) { /* * SZ_64K pages require covering the whole 2M PT (gen8 to tgl/dg1). * While that does not require the whole 2M block to be contiguous * it is easier to make it so, since we need that for SZ_2M pagees. * Since we randomly offset the start of the vma, we need a 4M object * so that there is a 2M range within it is suitable for SZ_64K PTE. */ return i915_gem_object_create_internal(gt->i915, SZ_4M); } static int mem_tlbinv(struct intel_gt *gt, struct drm_i915_gem_object *(*create_fn)(struct intel_gt *), void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length)) { unsigned int ppgtt_size = RUNTIME_INFO(gt->i915)->ppgtt_size; struct intel_engine_cs *engine; struct drm_i915_gem_object *A, *B; struct i915_ppgtt *ppgtt; struct i915_vma *va, *vb; enum intel_engine_id id; I915_RND_STATE(prng); void *vaddr; int err; /* * Check that the TLB invalidate is able to revoke an active * page. We load a page into a spinning COND_BBE loop and then * remap that page to a new physical address. The old address, and * so the loop keeps spinning, is retained in the TLB cache until * we issue an invalidate. */ A = create_fn(gt); if (IS_ERR(A)) return PTR_ERR(A); vaddr = i915_gem_object_pin_map_unlocked(A, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_a; } B = create_fn(gt); if (IS_ERR(B)) { err = PTR_ERR(B); goto out_a; } vaddr = i915_gem_object_pin_map_unlocked(B, I915_MAP_WC); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto out_b; } GEM_BUG_ON(A->base.size != B->base.size); if ((A->mm.page_sizes.phys | B->mm.page_sizes.phys) & (A->base.size - 1)) pr_warn("Failed to allocate contiguous pages for size %zx\n", A->base.size); ppgtt = i915_ppgtt_create(gt, 0); if (IS_ERR(ppgtt)) { err = PTR_ERR(ppgtt); goto out_b; } va = i915_vma_instance(A, &ppgtt->vm, NULL); if (IS_ERR(va)) { err = PTR_ERR(va); goto out_vm; } vb = i915_vma_instance(B, &ppgtt->vm, NULL); if (IS_ERR(vb)) { err = PTR_ERR(vb); goto out_vm; } err = 0; for_each_engine(engine, gt, id) { struct i915_gem_ww_ctx ww; struct intel_context *ce; int bit; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } i915_vm_put(ce->vm); ce->vm = i915_vm_get(&ppgtt->vm); for_i915_gem_ww(&ww, err, true) err = intel_context_pin_ww(ce, &ww); if (err) goto err_put; for_each_set_bit(bit, (unsigned long *)&RUNTIME_INFO(gt->i915)->page_sizes, BITS_PER_TYPE(RUNTIME_INFO(gt->i915)->page_sizes)) { unsigned int len; if (BIT_ULL(bit) < i915_vm_obj_min_alignment(va->vm, va->obj)) continue; /* sanitycheck the semaphore wake up */ err = pte_tlbinv(ce, va, va, BIT_ULL(bit), NULL, SZ_4K, &prng); if (err) goto err_unpin; for (len = 2; len <= ppgtt_size; len = min(2 * len, ppgtt_size)) { err = pte_tlbinv(ce, va, vb, BIT_ULL(bit), tlbinv, BIT_ULL(len), &prng); if (err) goto err_unpin; if (len == ppgtt_size) break; } } err_unpin: intel_context_unpin(ce); err_put: intel_context_put(ce); if (err) break; } if (igt_flush_test(gt->i915)) err = -EIO; out_vm: i915_vm_put(&ppgtt->vm); out_b: i915_gem_object_put(B); out_a: i915_gem_object_put(A); return err; } static void tlbinv_full(struct i915_address_space *vm, u64 addr, u64 length) { intel_gt_invalidate_tlb_full(vm->gt, intel_gt_tlb_seqno(vm->gt) | 1); } static int invalidate_full(void *arg) { struct intel_gt *gt = arg; int err; if (GRAPHICS_VER(gt->i915) < 8) return 0; /* TLB invalidate not implemented */ err = mem_tlbinv(gt, create_smem, tlbinv_full); if (err == 0) err = mem_tlbinv(gt, create_lmem, tlbinv_full); if (err == -ENODEV || err == -ENXIO) err = 0; return err; } int intel_tlb_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(invalidate_full), }; struct intel_gt *gt; unsigned int i; for_each_gt(gt, i915, i) { int err; if (intel_gt_is_wedged(gt)) continue; err = intel_gt_live_subtests(tests, gt); if (err) return err; } return 0; }