/* $OpenBSD: atomic.h,v 1.23 2024/01/16 23:38:13 jsg Exp $ */ /** * \file drm_atomic.h * Atomic operations used in the DRM which may or may not be provided by the OS. * * \author Eric Anholt */ /*- * Copyright 2004 Eric Anholt * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef _DRM_LINUX_ATOMIC_H_ #define _DRM_LINUX_ATOMIC_H_ #include #include #include #include #include /* via x86/include/asm/atomic.h */ #define ATOMIC_INIT(x) (x) #define atomic_set(p, v) WRITE_ONCE(*(p), (v)) #define atomic_read(p) READ_ONCE(*(p)) #define atomic_inc(p) __sync_fetch_and_add(p, 1) #define atomic_dec(p) __sync_fetch_and_sub(p, 1) #define atomic_add(n, p) __sync_fetch_and_add(p, n) #define atomic_sub(n, p) __sync_fetch_and_sub(p, n) #define atomic_and(n, p) __sync_fetch_and_and(p, n) #define atomic_or(n, p) atomic_setbits_int(p, n) #define atomic_add_return(n, p) __sync_add_and_fetch(p, n) #define atomic_sub_return(n, p) __sync_sub_and_fetch(p, n) #define atomic_sub_and_test(n, p) (atomic_sub_return(n, p) == 0) #define atomic_inc_return(v) atomic_add_return(1, (v)) #define atomic_dec_return(v) atomic_sub_return(1, (v)) #define atomic_dec_and_test(v) (atomic_dec_return(v) == 0) #define atomic_inc_and_test(v) (atomic_inc_return(v) == 0) #define atomic_cmpxchg(p, o, n) __sync_val_compare_and_swap(p, o, n) #define cmpxchg(p, o, n) __sync_val_compare_and_swap(p, o, n) #define cmpxchg64(p, o, n) __sync_val_compare_and_swap(p, o, n) #define atomic_set_release(p, v) atomic_set((p), (v)) #define atomic_andnot(bits, p) atomic_clearbits_int(p,bits) #define atomic_fetch_inc(p) __sync_fetch_and_add(p, 1) #define atomic_fetch_xor(n, p) __sync_fetch_and_xor(p, n) #define try_cmpxchg(p, op, n) \ ({ \ __typeof(p) __op = (__typeof((p)))(op); \ __typeof(*(p)) __o = *__op; \ __typeof(*(p)) __p = __sync_val_compare_and_swap((p), (__o), (n)); \ if (__p != __o) \ *__op = __p; \ (__p == __o); \ }) static inline bool atomic_try_cmpxchg(volatile int *p, int *op, int n) { return try_cmpxchg(p, op, n); } static inline int atomic_xchg(volatile int *v, int n) { __sync_synchronize(); return __sync_lock_test_and_set(v, n); } #define xchg(v, n) __sync_lock_test_and_set(v, n) static inline int atomic_add_unless(volatile int *v, int n, int u) { int o; do { o = *v; if (o == u) return 0; } while (__sync_val_compare_and_swap(v, o, o +n) != o); return 1; } #define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0) static inline int atomic_dec_if_positive(volatile int *v) { int r, o; do { o = *v; r = o - 1; if (r < 0) break; } while (__sync_val_compare_and_swap(v, o, r) != o); return r; } #define atomic_long_read(p) READ_ONCE(*(p)) /* 32 bit powerpc lacks 64 bit atomics */ #if !defined(__powerpc__) || defined(__powerpc64__) typedef int64_t atomic64_t; #define ATOMIC64_INIT(x) (x) #define atomic64_set(p, v) WRITE_ONCE(*(p), (v)) #define atomic64_read(p) READ_ONCE(*(p)) static inline int64_t atomic64_xchg(volatile int64_t *v, int64_t n) { __sync_synchronize(); return __sync_lock_test_and_set(v, n); } static inline int64_t atomic64_cmpxchg(volatile int64_t *v, int64_t o, int64_t n) { return __sync_val_compare_and_swap(v, o, n); } #define atomic64_add(n, p) __sync_fetch_and_add_8(p, n) #define atomic64_sub(n, p) __sync_fetch_and_sub_8(p, n) #define atomic64_inc(p) __sync_fetch_and_add_8(p, 1) #define atomic64_add_return(n, p) __sync_add_and_fetch_8(p, n) #define atomic64_inc_return(p) __sync_add_and_fetch_8(p, 1) #else extern struct mutex atomic64_mtx; typedef struct { volatile int64_t val; } atomic64_t; #define ATOMIC64_INIT(x) { (x) } static inline void atomic64_set(atomic64_t *v, int64_t i) { mtx_enter(&atomic64_mtx); v->val = i; mtx_leave(&atomic64_mtx); } static inline int64_t atomic64_read(atomic64_t *v) { int64_t val; mtx_enter(&atomic64_mtx); val = v->val; mtx_leave(&atomic64_mtx); return val; } static inline int64_t atomic64_xchg(atomic64_t *v, int64_t n) { int64_t val; mtx_enter(&atomic64_mtx); val = v->val; v->val = n; mtx_leave(&atomic64_mtx); return val; } static inline void atomic64_add(int i, atomic64_t *v) { mtx_enter(&atomic64_mtx); v->val += i; mtx_leave(&atomic64_mtx); } #define atomic64_inc(p) atomic64_add(p, 1) static inline int64_t atomic64_add_return(int i, atomic64_t *v) { int64_t val; mtx_enter(&atomic64_mtx); val = v->val + i; v->val = val; mtx_leave(&atomic64_mtx); return val; } #define atomic64_inc_return(p) atomic64_add_return(1, p) static inline void atomic64_sub(int i, atomic64_t *v) { mtx_enter(&atomic64_mtx); v->val -= i; mtx_leave(&atomic64_mtx); } #endif #ifdef __LP64__ typedef int64_t atomic_long_t; #define atomic_long_set(p, v) atomic64_set(p, v) #define atomic_long_xchg(v, n) atomic64_xchg(v, n) #define atomic_long_cmpxchg(p, o, n) atomic_cmpxchg(p, o, n) #define atomic_long_add(i, v) atomic64_add(i, v) #define atomic_long_sub(i, v) atomic64_sub(i, v) #else typedef int32_t atomic_long_t; #define atomic_long_set(p, v) atomic_set(p, v) #define atomic_long_xchg(v, n) atomic_xchg(v, n) #define atomic_long_cmpxchg(p, o, n) atomic_cmpxchg(p, o, n) #define atomic_long_add(i, v) atomic_add(i, v) #define atomic_long_sub(i, v) atomic_sub(i, v) #endif static inline atomic_t test_and_set_bit(u_int b, volatile void *p) { unsigned int m = 1 << (b & 0x1f); unsigned int prev = __sync_fetch_and_or((volatile u_int *)p + (b >> 5), m); return (prev & m) != 0; } static inline void clear_bit(u_int b, volatile void *p) { atomic_clearbits_int(((volatile u_int *)p) + (b >> 5), 1 << (b & 0x1f)); } static inline void clear_bit_unlock(u_int b, volatile void *p) { membar_enter(); clear_bit(b, p); } static inline void set_bit(u_int b, volatile void *p) { atomic_setbits_int(((volatile u_int *)p) + (b >> 5), 1 << (b & 0x1f)); } static inline void __clear_bit(u_int b, volatile void *p) { volatile u_int *ptr = (volatile u_int *)p; ptr[b >> 5] &= ~(1 << (b & 0x1f)); } static inline void __set_bit(u_int b, volatile void *p) { volatile u_int *ptr = (volatile u_int *)p; ptr[b >> 5] |= (1 << (b & 0x1f)); } static inline int test_bit(u_int b, const volatile void *p) { return !!(((volatile u_int *)p)[b >> 5] & (1 << (b & 0x1f))); } static inline int __test_and_set_bit(u_int b, volatile void *p) { unsigned int m = 1 << (b & 0x1f); volatile u_int *ptr = (volatile u_int *)p; unsigned int prev = ptr[b >> 5]; ptr[b >> 5] |= m; return (prev & m) != 0; } static inline int test_and_clear_bit(u_int b, volatile void *p) { unsigned int m = 1 << (b & 0x1f); unsigned int prev = __sync_fetch_and_and((volatile u_int *)p + (b >> 5), ~m); return (prev & m) != 0; } static inline int __test_and_clear_bit(u_int b, volatile void *p) { volatile u_int *ptr = (volatile u_int *)p; int rv = !!(ptr[b >> 5] & (1 << (b & 0x1f))); ptr[b >> 5] &= ~(1 << (b & 0x1f)); return rv; } static inline int find_first_zero_bit(volatile void *p, int max) { int b; volatile u_int *ptr = (volatile u_int *)p; for (b = 0; b < max; b += 32) { if (ptr[b >> 5] != ~0) { for (;;) { if ((ptr[b >> 5] & (1 << (b & 0x1f))) == 0) return b; b++; } } } return max; } static inline int find_next_zero_bit(volatile void *p, int max, int b) { volatile u_int *ptr = (volatile u_int *)p; for (; b < max; b += 32) { if (ptr[b >> 5] != ~0) { for (;;) { if ((ptr[b >> 5] & (1 << (b & 0x1f))) == 0) return b; b++; } } } return max; } static inline int find_first_bit(volatile void *p, int max) { int b; volatile u_int *ptr = (volatile u_int *)p; for (b = 0; b < max; b += 32) { if (ptr[b >> 5] != 0) { for (;;) { if (ptr[b >> 5] & (1 << (b & 0x1f))) return b; b++; } } } return max; } static inline int find_next_bit(const volatile void *p, int max, int b) { volatile u_int *ptr = (volatile u_int *)p; for (; b < max; b+= 32) { if (ptr[b >> 5] != 0) { for (;;) { if (ptr[b >> 5] & (1 << (b & 0x1f))) return b; b++; } } } return max; } #define for_each_set_bit(b, p, max) \ for ((b) = find_first_bit((p), (max)); \ (b) < (max); \ (b) = find_next_bit((p), (max), (b) + 1)) #define for_each_clear_bit(b, p, max) \ for ((b) = find_first_zero_bit((p), (max)); \ (b) < (max); \ (b) = find_next_zero_bit((p), (max), (b) + 1)) #if defined(__i386__) #define rmb() __asm volatile("lock; addl $0,-4(%%esp)" : : : "memory", "cc") #define wmb() __asm volatile("lock; addl $0,-4(%%esp)" : : : "memory", "cc") #define mb() __asm volatile("lock; addl $0,-4(%%esp)" : : : "memory", "cc") #define smp_mb() __asm volatile("lock; addl $0,-4(%%esp)" : : : "memory", "cc") #define smp_rmb() __membar("") #define smp_wmb() __membar("") #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define smp_mb__after_atomic() do { } while (0) #define smp_mb__before_atomic() do { } while (0) #elif defined(__amd64__) #define rmb() __membar("lfence") #define wmb() __membar("sfence") #define mb() __membar("mfence") #define smp_mb() __asm volatile("lock; addl $0,-4(%%rsp)" : : : "memory", "cc") #define smp_rmb() __membar("") #define smp_wmb() __membar("") #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define smp_mb__after_atomic() do { } while (0) #define smp_mb__before_atomic() do { } while (0) #elif defined(__aarch64__) #define rmb() __membar("dsb ld") #define wmb() __membar("dsb st") #define mb() __membar("dsb sy") #define dma_rmb() __membar("dmb oshld") #define dma_wmb() __membar("dmb oshst") #define dma_mb() __membar("dmb osh") #define smp_mb() __membar("dmb ish") #elif defined(__arm__) #define rmb() __membar("dsb sy") #define wmb() __membar("dsb sy") #define mb() __membar("dsb sy") #elif defined(__mips64__) #define rmb() mips_sync() #define wmb() mips_sync() #define mb() mips_sync() #elif defined(__powerpc64__) #define rmb() __membar("sync") #define wmb() __membar("sync") #define mb() __membar("sync") #define smp_rmb() __membar("lwsync") #define smp_wmb() __membar("lwsync") #define smp_mb() __membar("sync") #elif defined(__powerpc__) #define rmb() __membar("sync") #define wmb() __membar("sync") #define mb() __membar("sync") #define smp_wmb() __membar("eieio") #elif defined(__riscv) #define rmb() __membar("fence ir,ir") #define wmb() __membar("fence ow,ow") #define mb() __membar("fence iorw,iorw") #define smp_rmb() __membar("fence r,r") #define smp_wmb() __membar("fence w,w") #define smp_mb() __membar("fence rw,rw") #elif defined(__sparc64__) #define rmb() membar_sync() #define wmb() membar_sync() #define mb() membar_sync() #endif #ifndef smp_rmb #define smp_rmb() rmb() #endif #ifndef smp_wmb #define smp_wmb() wmb() #endif #ifndef mmiowb #define mmiowb() wmb() #endif #ifndef smp_mb__before_atomic #define smp_mb__before_atomic() mb() #endif #ifndef smp_mb__after_atomic #define smp_mb__after_atomic() mb() #endif #ifndef smp_store_mb #define smp_store_mb(x, v) do { x = v; mb(); } while (0) #endif #ifndef smp_store_release #define smp_store_release(x, v) do { smp_mb(); WRITE_ONCE(*x, v); } while(0) #endif #ifndef smp_load_acquire #define smp_load_acquire(x) \ ({ \ __typeof(*x) _v = READ_ONCE(*x); \ smp_mb(); \ _v; \ }) #endif #endif