/* $OpenBSD: uipc_syscalls.c,v 1.219 2024/04/25 17:32:53 bluhm Exp $ */ /* $NetBSD: uipc_syscalls.c,v 1.19 1996/02/09 19:00:48 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include int copyaddrout(struct proc *, struct mbuf *, struct sockaddr *, socklen_t, socklen_t *); int sys_socket(struct proc *p, void *v, register_t *retval) { struct sys_socket_args /* { syscallarg(int) domain; syscallarg(int) type; syscallarg(int) protocol; } */ *uap = v; struct filedesc *fdp = p->p_fd; struct socket *so; struct file *fp; int type = SCARG(uap, type); int domain = SCARG(uap, domain); int fd, cloexec, nonblock, fflag, error; unsigned int ss = 0; if ((type & SOCK_DNS) && !(domain == AF_INET || domain == AF_INET6)) return (EINVAL); if (ISSET(type, SOCK_DNS)) ss |= SS_DNS; error = pledge_socket(p, domain, ss); if (error) return (error); type &= ~(SOCK_CLOEXEC | SOCK_NONBLOCK | SOCK_DNS); cloexec = (SCARG(uap, type) & SOCK_CLOEXEC) ? UF_EXCLOSE : 0; nonblock = SCARG(uap, type) & SOCK_NONBLOCK; fflag = FREAD | FWRITE | (nonblock ? FNONBLOCK : 0); error = socreate(SCARG(uap, domain), &so, type, SCARG(uap, protocol)); if (error) return (error); fdplock(fdp); error = falloc(p, &fp, &fd); if (error) { fdpunlock(fdp); soclose(so, MSG_DONTWAIT); } else { fp->f_flag = fflag; fp->f_type = DTYPE_SOCKET; fp->f_ops = &socketops; so->so_state |= ss; fp->f_data = so; fdinsert(fdp, fd, cloexec, fp); fdpunlock(fdp); FRELE(fp, p); *retval = fd; } return (error); } static inline int isdnssocket(struct socket *so) { return (so->so_state & SS_DNS); } /* For SS_DNS sockets, only allow port DNS (port 53) */ static int dns_portcheck(struct proc *p, struct socket *so, void *nam, size_t namelen) { int error = EINVAL; switch (so->so_proto->pr_domain->dom_family) { case AF_INET: if (namelen < sizeof(struct sockaddr_in)) break; if (((struct sockaddr_in *)nam)->sin_port == htons(53)) error = 0; break; #ifdef INET6 case AF_INET6: if (namelen < sizeof(struct sockaddr_in6)) break; if (((struct sockaddr_in6 *)nam)->sin6_port == htons(53)) error = 0; #endif } if (error && p->p_p->ps_flags & PS_PLEDGE) return (pledge_fail(p, EPERM, PLEDGE_DNS)); return error; } int sys_bind(struct proc *p, void *v, register_t *retval) { struct sys_bind_args /* { syscallarg(int) s; syscallarg(const struct sockaddr *) name; syscallarg(socklen_t) namelen; } */ *uap = v; struct file *fp; struct mbuf *nam; struct socket *so; int error; if ((error = getsock(p, SCARG(uap, s), &fp)) != 0) return (error); so = fp->f_data; error = pledge_socket(p, so->so_proto->pr_domain->dom_family, so->so_state); if (error) goto out; if (so->so_state & SS_YP) { error = ENOTSOCK; goto out; } error = sockargs(&nam, SCARG(uap, name), SCARG(uap, namelen), MT_SONAME); if (error) goto out; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrsockaddr(p, mtod(nam, caddr_t), SCARG(uap, namelen)); #endif solock_shared(so); error = sobind(so, nam, p); sounlock_shared(so); m_freem(nam); out: FRELE(fp, p); return (error); } int sys_listen(struct proc *p, void *v, register_t *retval) { struct sys_listen_args /* { syscallarg(int) s; syscallarg(int) backlog; } */ *uap = v; struct file *fp; struct socket *so; int error; if ((error = getsock(p, SCARG(uap, s), &fp)) != 0) return (error); so = fp->f_data; if (so->so_state & SS_YP) return ENOTSOCK; solock(so); error = solisten(so, SCARG(uap, backlog)); sounlock(so); FRELE(fp, p); return (error); } int sys_accept(struct proc *p, void *v, register_t *retval) { struct sys_accept_args /* { syscallarg(int) s; syscallarg(struct sockaddr *) name; syscallarg(socklen_t *) anamelen; } */ *uap = v; return (doaccept(p, SCARG(uap, s), SCARG(uap, name), SCARG(uap, anamelen), SOCK_NONBLOCK_INHERIT, retval)); } int sys_accept4(struct proc *p, void *v, register_t *retval) { struct sys_accept4_args /* { syscallarg(int) s; syscallarg(struct sockaddr *) name; syscallarg(socklen_t *) anamelen; syscallarg(socklen_t *) int flags; } */ *uap = v; if (SCARG(uap, flags) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return (EINVAL); return (doaccept(p, SCARG(uap, s), SCARG(uap, name), SCARG(uap, anamelen), SCARG(uap, flags), retval)); } int doaccept(struct proc *p, int sock, struct sockaddr *name, socklen_t *anamelen, int flags, register_t *retval) { struct filedesc *fdp = p->p_fd; struct file *fp, *headfp; struct mbuf *nam; socklen_t namelen; int error, tmpfd; struct socket *head, *so; int cloexec, nflag, persocket; cloexec = (flags & SOCK_CLOEXEC) ? UF_EXCLOSE : 0; if (name && (error = copyin(anamelen, &namelen, sizeof (namelen)))) return (error); if ((error = getsock(p, sock, &fp)) != 0) return (error); headfp = fp; fdplock(fdp); error = falloc(p, &fp, &tmpfd); fdpunlock(fdp); if (error) { FRELE(headfp, p); return (error); } nam = m_get(M_WAIT, MT_SONAME); head = headfp->f_data; solock(head); persocket = solock_persocket(head); if (isdnssocket(head) || (head->so_options & SO_ACCEPTCONN) == 0) { error = EINVAL; goto out_unlock; } if ((headfp->f_flag & FNONBLOCK) && head->so_qlen == 0) { if (head->so_rcv.sb_state & SS_CANTRCVMORE) error = ECONNABORTED; else error = EWOULDBLOCK; goto out_unlock; } while (head->so_qlen == 0 && head->so_error == 0) { if (head->so_rcv.sb_state & SS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } error = sosleep_nsec(head, &head->so_timeo, PSOCK | PCATCH, "netacc", INFSLP); if (error) goto out_unlock; } if (head->so_error) { error = head->so_error; head->so_error = 0; goto out_unlock; } /* * Do not sleep after we have taken the socket out of the queue. */ so = TAILQ_FIRST(&head->so_q); if (persocket) solock(so); if (soqremque(so, 1) == 0) panic("accept"); /* Figure out whether the new socket should be non-blocking. */ nflag = flags & SOCK_NONBLOCK_INHERIT ? (headfp->f_flag & FNONBLOCK) : (flags & SOCK_NONBLOCK ? FNONBLOCK : 0); /* connection has been removed from the listen queue */ knote(&head->so_rcv.sb_klist, 0); if (persocket) sounlock(head); fp->f_type = DTYPE_SOCKET; fp->f_flag = FREAD | FWRITE | nflag; fp->f_ops = &socketops; fp->f_data = so; error = soaccept(so, nam); if (persocket) sounlock(so); else sounlock(head); if (error) goto out; if (name != NULL) { error = copyaddrout(p, nam, name, namelen, anamelen); if (error) goto out; } fdplock(fdp); fdinsert(fdp, tmpfd, cloexec, fp); fdpunlock(fdp); FRELE(fp, p); *retval = tmpfd; m_freem(nam); FRELE(headfp, p); return 0; out_unlock: sounlock(head); out: fdplock(fdp); fdremove(fdp, tmpfd); fdpunlock(fdp); closef(fp, p); m_freem(nam); FRELE(headfp, p); return (error); } int sys_connect(struct proc *p, void *v, register_t *retval) { struct sys_connect_args /* { syscallarg(int) s; syscallarg(const struct sockaddr *) name; syscallarg(socklen_t) namelen; } */ *uap = v; struct file *fp; struct socket *so; struct mbuf *nam; int error, interrupted = 0; if ((error = getsock(p, SCARG(uap, s), &fp)) != 0) return (error); so = fp->f_data; error = pledge_socket(p, so->so_proto->pr_domain->dom_family, so->so_state); if (error) goto out; if (so->so_state & SS_YP) { error = ENOTSOCK; goto out; } error = sockargs(&nam, SCARG(uap, name), SCARG(uap, namelen), MT_SONAME); if (error) goto out; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrsockaddr(p, mtod(nam, caddr_t), SCARG(uap, namelen)); #endif solock_shared(so); if (isdnssocket(so)) { error = dns_portcheck(p, so, mtod(nam, void *), nam->m_len); if (error) goto unlock; } if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto unlock; } error = soconnect(so, nam); if (error) goto bad; if ((fp->f_flag & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto unlock; } while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = sosleep_nsec(so, &so->so_timeo, PSOCK | PCATCH, "netcon", INFSLP); if (error) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } bad: if (!interrupted) so->so_state &= ~SS_ISCONNECTING; unlock: sounlock_shared(so); m_freem(nam); out: FRELE(fp, p); if (error == ERESTART) error = EINTR; return (error); } int sys_socketpair(struct proc *p, void *v, register_t *retval) { struct sys_socketpair_args /* { syscallarg(int) domain; syscallarg(int) type; syscallarg(int) protocol; syscallarg(int *) rsv; } */ *uap = v; struct filedesc *fdp = p->p_fd; struct file *fp1 = NULL, *fp2 = NULL; struct socket *so1, *so2; int type, cloexec, nonblock, fflag, error, sv[2]; type = SCARG(uap, type) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK); cloexec = (SCARG(uap, type) & SOCK_CLOEXEC) ? UF_EXCLOSE : 0; nonblock = SCARG(uap, type) & SOCK_NONBLOCK; fflag = FREAD | FWRITE | (nonblock ? FNONBLOCK : 0); error = socreate(SCARG(uap, domain), &so1, type, SCARG(uap, protocol)); if (error) return (error); error = socreate(SCARG(uap, domain), &so2, type, SCARG(uap, protocol)); if (error) goto free1; error = soconnect2(so1, so2); if (error != 0) goto free2; if ((SCARG(uap, type) & SOCK_TYPE_MASK) == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error != 0) goto free2; } fdplock(fdp); if ((error = falloc(p, &fp1, &sv[0])) != 0) goto free3; fp1->f_flag = fflag; fp1->f_type = DTYPE_SOCKET; fp1->f_ops = &socketops; fp1->f_data = so1; if ((error = falloc(p, &fp2, &sv[1])) != 0) goto free4; fp2->f_flag = fflag; fp2->f_type = DTYPE_SOCKET; fp2->f_ops = &socketops; fp2->f_data = so2; error = copyout(sv, SCARG(uap, rsv), 2 * sizeof (int)); if (error == 0) { fdinsert(fdp, sv[0], cloexec, fp1); fdinsert(fdp, sv[1], cloexec, fp2); fdpunlock(fdp); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrfds(p, sv, 2); #endif FRELE(fp1, p); FRELE(fp2, p); return (0); } fdremove(fdp, sv[1]); free4: fdremove(fdp, sv[0]); free3: fdpunlock(fdp); if (fp2 != NULL) { closef(fp2, p); so2 = NULL; } if (fp1 != NULL) { closef(fp1, p); so1 = NULL; } free2: if (so2 != NULL) (void)soclose(so2, 0); free1: if (so1 != NULL) (void)soclose(so1, 0); return (error); } int sys_sendto(struct proc *p, void *v, register_t *retval) { struct sys_sendto_args /* { syscallarg(int) s; syscallarg(const void *) buf; syscallarg(size_t) len; syscallarg(int) flags; syscallarg(const struct sockaddr *) to; syscallarg(socklen_t) tolen; } */ *uap = v; struct msghdr msg; struct iovec aiov; msg.msg_name = (caddr_t)SCARG(uap, to); msg.msg_namelen = SCARG(uap, tolen); msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_flags = 0; aiov.iov_base = (char *)SCARG(uap, buf); aiov.iov_len = SCARG(uap, len); return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval)); } int sys_sendmsg(struct proc *p, void *v, register_t *retval) { struct sys_sendmsg_args /* { syscallarg(int) s; syscallarg(const struct msghdr *) msg; syscallarg(int) flags; } */ *uap = v; struct msghdr msg; struct iovec aiov[UIO_SMALLIOV], *iov; int error; error = copyin(SCARG(uap, msg), &msg, sizeof (msg)); if (error) return (error); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrmsghdr(p, &msg); #endif if (msg.msg_iovlen > IOV_MAX) return (EMSGSIZE); if (msg.msg_iovlen > UIO_SMALLIOV) iov = mallocarray(msg.msg_iovlen, sizeof(struct iovec), M_IOV, M_WAITOK); else iov = aiov; if (msg.msg_iovlen && (error = copyin(msg.msg_iov, iov, msg.msg_iovlen * sizeof (struct iovec)))) goto done; #ifdef KTRACE if (msg.msg_iovlen && KTRPOINT(p, KTR_STRUCT)) ktriovec(p, iov, msg.msg_iovlen); #endif msg.msg_iov = iov; msg.msg_flags = 0; error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval); done: if (iov != aiov) free(iov, M_IOV, sizeof(struct iovec) * msg.msg_iovlen); return (error); } int sys_sendmmsg(struct proc *p, void *v, register_t *retval) { struct sys_sendmmsg_args /* { syscallarg(int) s; syscallarg(struct mmsghdr *) mmsg; syscallarg(unsigned int) vlen; syscallarg(int) flags; } */ *uap = v; struct mmsghdr mmsg, *mmsgp; struct iovec aiov[UIO_SMALLIOV], *iov = aiov, *uiov; size_t iovlen = UIO_SMALLIOV; register_t retsnd; unsigned int vlen, dgrams; int error = 0, flags, s; s = SCARG(uap, s); flags = SCARG(uap, flags); /* Arbitrarily capped at 1024 datagrams. */ vlen = SCARG(uap, vlen); if (vlen > 1024) vlen = 1024; mmsgp = SCARG(uap, mmsg); for (dgrams = 0; dgrams < vlen; dgrams++) { error = copyin(&mmsgp[dgrams], &mmsg, sizeof(mmsg)); if (error) break; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrmmsghdr(p, &mmsg); #endif if (mmsg.msg_hdr.msg_iovlen > IOV_MAX) { error = EMSGSIZE; break; } if (mmsg.msg_hdr.msg_iovlen > iovlen) { if (iov != aiov) free(iov, M_IOV, iovlen * sizeof(struct iovec)); iovlen = mmsg.msg_hdr.msg_iovlen; iov = mallocarray(iovlen, sizeof(struct iovec), M_IOV, M_WAITOK); } if (mmsg.msg_hdr.msg_iovlen > 0) { error = copyin(mmsg.msg_hdr.msg_iov, iov, mmsg.msg_hdr.msg_iovlen * sizeof(struct iovec)); if (error) break; } #ifdef KTRACE if (mmsg.msg_hdr.msg_iovlen && KTRPOINT(p, KTR_STRUCT)) ktriovec(p, iov, mmsg.msg_hdr.msg_iovlen); #endif uiov = mmsg.msg_hdr.msg_iov; mmsg.msg_hdr.msg_iov = iov; mmsg.msg_hdr.msg_flags = 0; error = sendit(p, s, &mmsg.msg_hdr, flags, &retsnd); if (error) break; mmsg.msg_hdr.msg_iov = uiov; mmsg.msg_len = retsnd; error = copyout(&mmsg, &mmsgp[dgrams], sizeof(mmsg)); if (error) break; } if (iov != aiov) free(iov, M_IOV, sizeof(struct iovec) * iovlen); *retval = dgrams; if (error && dgrams > 0) error = 0; return (error); } int sendit(struct proc *p, int s, struct msghdr *mp, int flags, register_t *retsize) { struct file *fp; struct uio auio; struct iovec *iov; int i; struct mbuf *to, *control; struct socket *so; size_t len; int error; #ifdef KTRACE struct iovec *ktriov = NULL; int iovlen = 0; #endif to = NULL; if ((error = getsock(p, s, &fp)) != 0) return (error); so = fp->f_data; if (fp->f_flag & FNONBLOCK) flags |= MSG_DONTWAIT; error = pledge_sendit(p, mp->msg_name); if (error) goto bad; auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_procp = p; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { /* Don't allow sum > SSIZE_MAX */ if (iov->iov_len > SSIZE_MAX || (auio.uio_resid += iov->iov_len) > SSIZE_MAX) { error = EINVAL; goto bad; } } if (mp->msg_name) { error = sockargs(&to, mp->msg_name, mp->msg_namelen, MT_SONAME); if (error) goto bad; if (isdnssocket(so)) { error = dns_portcheck(p, so, mtod(to, caddr_t), mp->msg_namelen); if (error) goto bad; } #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrsockaddr(p, mtod(to, caddr_t), mp->msg_namelen); #endif } if (mp->msg_control) { if (mp->msg_controllen < CMSG_ALIGN(sizeof(struct cmsghdr))) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error) goto bad; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT) && mp->msg_controllen) ktrcmsghdr(p, mtod(control, char *), mp->msg_controllen); #endif } else control = NULL; #ifdef KTRACE if (KTRPOINT(p, KTR_GENIO)) { ktriov = mallocarray(auio.uio_iovcnt, sizeof(struct iovec), M_TEMP, M_WAITOK); iovlen = auio.uio_iovcnt * sizeof (struct iovec); memcpy(ktriov, auio.uio_iov, iovlen); } #endif len = auio.uio_resid; error = sosend(so, to, &auio, NULL, control, flags); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; if (error == EPIPE && (flags & MSG_NOSIGNAL) == 0) { KERNEL_LOCK(); ptsignal(p, SIGPIPE, STHREAD); KERNEL_UNLOCK(); } } if (error == 0) { *retsize = len - auio.uio_resid; mtx_enter(&fp->f_mtx); fp->f_wxfer++; fp->f_wbytes += *retsize; mtx_leave(&fp->f_mtx); } #ifdef KTRACE if (ktriov != NULL) { if (error == 0) ktrgenio(p, s, UIO_WRITE, ktriov, *retsize); free(ktriov, M_TEMP, iovlen); } #endif bad: FRELE(fp, p); m_freem(to); return (error); } int sys_recvfrom(struct proc *p, void *v, register_t *retval) { struct sys_recvfrom_args /* { syscallarg(int) s; syscallarg(void *) buf; syscallarg(size_t) len; syscallarg(int) flags; syscallarg(struct sockaddr *) from; syscallarg(socklen_t *) fromlenaddr; } */ *uap = v; struct msghdr msg; struct iovec aiov; int error; if (SCARG(uap, fromlenaddr)) { error = copyin(SCARG(uap, fromlenaddr), &msg.msg_namelen, sizeof (msg.msg_namelen)); if (error) return (error); } else msg.msg_namelen = 0; msg.msg_name = (caddr_t)SCARG(uap, from); msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = SCARG(uap, buf); aiov.iov_len = SCARG(uap, len); msg.msg_control = NULL; msg.msg_flags = SCARG(uap, flags); return (recvit(p, SCARG(uap, s), &msg, (caddr_t)SCARG(uap, fromlenaddr), retval)); } int sys_recvmsg(struct proc *p, void *v, register_t *retval) { struct sys_recvmsg_args /* { syscallarg(int) s; syscallarg(struct msghdr *) msg; syscallarg(int) flags; } */ *uap = v; struct msghdr msg; struct iovec aiov[UIO_SMALLIOV], *uiov, *iov; int error; error = copyin(SCARG(uap, msg), &msg, sizeof (msg)); if (error) return (error); if (msg.msg_iovlen > IOV_MAX) return (EMSGSIZE); if (msg.msg_iovlen > UIO_SMALLIOV) iov = mallocarray(msg.msg_iovlen, sizeof(struct iovec), M_IOV, M_WAITOK); else iov = aiov; msg.msg_flags = SCARG(uap, flags); if (msg.msg_iovlen > 0) { error = copyin(msg.msg_iov, iov, msg.msg_iovlen * sizeof(struct iovec)); if (error) goto done; } uiov = msg.msg_iov; msg.msg_iov = iov; if ((error = recvit(p, SCARG(uap, s), &msg, NULL, retval)) == 0) { msg.msg_iov = uiov; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) { ktrmsghdr(p, &msg); if (msg.msg_iovlen) ktriovec(p, iov, msg.msg_iovlen); } #endif error = copyout(&msg, SCARG(uap, msg), sizeof(msg)); } done: if (iov != aiov) free(iov, M_IOV, sizeof(struct iovec) * msg.msg_iovlen); return (error); } int sys_recvmmsg(struct proc *p, void *v, register_t *retval) { struct sys_recvmmsg_args /* { syscallarg(int) s; syscallarg(struct mmsghdr *) mmsg; syscallarg(unsigned int) vlen; syscallarg(int) flags; syscallarg(struct timespec *) timeout; } */ *uap = v; struct mmsghdr mmsg, *mmsgp; struct timespec ts, now, *timeout; struct iovec aiov[UIO_SMALLIOV], *uiov, *iov = aiov; size_t iovlen = UIO_SMALLIOV; register_t retrec; unsigned int vlen, dgrams; int error = 0, flags, s; timeout = SCARG(uap, timeout); if (timeout != NULL) { error = copyin(timeout, &ts, sizeof(ts)); if (error) return (error); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrreltimespec(p, &ts); #endif if (!timespecisvalid(&ts)) return (EINVAL); getnanotime(&now); timespecadd(&now, &ts, &ts); } s = SCARG(uap, s); flags = SCARG(uap, flags); /* Arbitrarily capped at 1024 datagrams. */ vlen = SCARG(uap, vlen); if (vlen > 1024) vlen = 1024; mmsgp = SCARG(uap, mmsg); for (dgrams = 0; dgrams < vlen;) { error = copyin(&mmsgp[dgrams], &mmsg, sizeof(mmsg)); if (error) break; if (mmsg.msg_hdr.msg_iovlen > IOV_MAX) { error = EMSGSIZE; break; } if (mmsg.msg_hdr.msg_iovlen > iovlen) { if (iov != aiov) free(iov, M_IOV, iovlen * sizeof(struct iovec)); iovlen = mmsg.msg_hdr.msg_iovlen; iov = mallocarray(iovlen, sizeof(struct iovec), M_IOV, M_WAITOK); } if (mmsg.msg_hdr.msg_iovlen > 0) { error = copyin(mmsg.msg_hdr.msg_iov, iov, mmsg.msg_hdr.msg_iovlen * sizeof(struct iovec)); if (error) break; } uiov = mmsg.msg_hdr.msg_iov; mmsg.msg_hdr.msg_iov = iov; mmsg.msg_hdr.msg_flags = flags & ~MSG_WAITFORONE; error = recvit(p, s, &mmsg.msg_hdr, NULL, &retrec); if (error) { if (error == EAGAIN && dgrams > 0) error = 0; break; } if (flags & MSG_WAITFORONE) flags |= MSG_DONTWAIT; mmsg.msg_hdr.msg_iov = uiov; mmsg.msg_len = retrec; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) { ktrmmsghdr(p, &mmsg); if (mmsg.msg_hdr.msg_iovlen) ktriovec(p, iov, mmsg.msg_hdr.msg_iovlen); } #endif error = copyout(&mmsg, &mmsgp[dgrams], sizeof(mmsg)); if (error) break; dgrams++; if (mmsg.msg_hdr.msg_flags & MSG_OOB) break; if (timeout != NULL) { getnanotime(&now); timespecsub(&now, &ts, &now); if (now.tv_sec > 0) break; } } if (iov != aiov) free(iov, M_IOV, iovlen * sizeof(struct iovec)); *retval = dgrams; /* * If we succeeded at least once, return 0, hopefully so->so_error * will catch it next time. */ if (error && dgrams > 0) { struct file *fp; struct socket *so; if (getsock(p, s, &fp) == 0) { so = (struct socket *)fp->f_data; so->so_error = error; FRELE(fp, p); } error = 0; } return (error); } int recvit(struct proc *p, int s, struct msghdr *mp, caddr_t namelenp, register_t *retsize) { struct file *fp; struct uio auio; struct iovec *iov; int i; size_t len; int error; struct mbuf *from = NULL, *control = NULL; #ifdef KTRACE struct iovec *ktriov = NULL; int iovlen = 0, kmsgflags; #endif if ((error = getsock(p, s, &fp)) != 0) return (error); auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_procp = p; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { /* Don't allow sum > SSIZE_MAX */ if (iov->iov_len > SSIZE_MAX || (auio.uio_resid += iov->iov_len) > SSIZE_MAX) { error = EINVAL; goto out; } } #ifdef KTRACE if (KTRPOINT(p, KTR_GENIO)) { ktriov = mallocarray(auio.uio_iovcnt, sizeof(struct iovec), M_TEMP, M_WAITOK); iovlen = auio.uio_iovcnt * sizeof (struct iovec); memcpy(ktriov, auio.uio_iov, iovlen); } kmsgflags = mp->msg_flags; #endif len = auio.uio_resid; if (fp->f_flag & FNONBLOCK) mp->msg_flags |= MSG_DONTWAIT; error = soreceive(fp->f_data, &from, &auio, NULL, mp->msg_control ? &control : NULL, &mp->msg_flags, mp->msg_control ? mp->msg_controllen : 0); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } #ifdef KTRACE if (ktriov != NULL) { if (error == 0) ktrgenio(p, s, UIO_READ, ktriov, len - auio.uio_resid); free(ktriov, M_TEMP, iovlen); } #endif if (error) goto out; *retsize = len - auio.uio_resid; if (mp->msg_name) { socklen_t alen; if (from == NULL) alen = 0; else { alen = from->m_len; error = copyout(mtod(from, caddr_t), mp->msg_name, MIN(alen, mp->msg_namelen)); if (error) goto out; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrsockaddr(p, mtod(from, caddr_t), alen); #endif } mp->msg_namelen = alen; if (namelenp && (error = copyout(&alen, namelenp, sizeof(alen)))) { goto out; } } if (mp->msg_control) { len = mp->msg_controllen; if (len <= 0 || control == NULL) len = 0; else { struct mbuf *m = control; caddr_t cp = mp->msg_control; do { i = m->m_len; if (len < i) { mp->msg_flags |= MSG_CTRUNC; i = len; } error = copyout(mtod(m, caddr_t), cp, i); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT) && error == 0 && i) { /* msg_flags potentially incorrect */ int rmsgflags = mp->msg_flags; mp->msg_flags = kmsgflags; ktrcmsghdr(p, mtod(m, char *), i); mp->msg_flags = rmsgflags; } #endif if (m->m_next) i = ALIGN(i); cp += i; len -= i; if (error != 0 || len <= 0) break; } while ((m = m->m_next) != NULL); len = cp - (caddr_t)mp->msg_control; } mp->msg_controllen = len; } if (!error) { mtx_enter(&fp->f_mtx); fp->f_rxfer++; fp->f_rbytes += *retsize; mtx_leave(&fp->f_mtx); } out: FRELE(fp, p); m_freem(from); m_freem(control); return (error); } int sys_shutdown(struct proc *p, void *v, register_t *retval) { struct sys_shutdown_args /* { syscallarg(int) s; syscallarg(int) how; } */ *uap = v; struct file *fp; int error; if ((error = getsock(p, SCARG(uap, s), &fp)) != 0) return (error); error = soshutdown(fp->f_data, SCARG(uap, how)); FRELE(fp, p); return (error); } int sys_setsockopt(struct proc *p, void *v, register_t *retval) { struct sys_setsockopt_args /* { syscallarg(int) s; syscallarg(int) level; syscallarg(int) name; syscallarg(const void *) val; syscallarg(socklen_t) valsize; } */ *uap = v; struct file *fp; struct mbuf *m = NULL; struct socket *so; int error; if ((error = getsock(p, SCARG(uap, s), &fp)) != 0) return (error); error = pledge_sockopt(p, 1, SCARG(uap, level), SCARG(uap, name)); if (error) goto bad; if (SCARG(uap, valsize) > MCLBYTES) { error = EINVAL; goto bad; } if (SCARG(uap, val)) { m = m_get(M_WAIT, MT_SOOPTS); if (SCARG(uap, valsize) > MLEN) { MCLGET(m, M_WAIT); if ((m->m_flags & M_EXT) == 0) { error = ENOBUFS; goto bad; } } error = copyin(SCARG(uap, val), mtod(m, caddr_t), SCARG(uap, valsize)); if (error) { goto bad; } m->m_len = SCARG(uap, valsize); } so = fp->f_data; error = sosetopt(so, SCARG(uap, level), SCARG(uap, name), m); bad: m_freem(m); FRELE(fp, p); return (error); } int sys_getsockopt(struct proc *p, void *v, register_t *retval) { struct sys_getsockopt_args /* { syscallarg(int) s; syscallarg(int) level; syscallarg(int) name; syscallarg(void *) val; syscallarg(socklen_t *) avalsize; } */ *uap = v; struct file *fp; struct mbuf *m = NULL; socklen_t valsize; struct socket *so; int error; if ((error = getsock(p, SCARG(uap, s), &fp)) != 0) return (error); error = pledge_sockopt(p, 0, SCARG(uap, level), SCARG(uap, name)); if (error) goto out; if (SCARG(uap, val)) { error = copyin(SCARG(uap, avalsize), &valsize, sizeof (valsize)); if (error) goto out; } else valsize = 0; m = m_get(M_WAIT, MT_SOOPTS); so = fp->f_data; error = sogetopt(so, SCARG(uap, level), SCARG(uap, name), m); if (error == 0 && SCARG(uap, val) && valsize && m != NULL) { if (valsize > m->m_len) valsize = m->m_len; error = copyout(mtod(m, caddr_t), SCARG(uap, val), valsize); if (error == 0) error = copyout(&valsize, SCARG(uap, avalsize), sizeof (valsize)); } m_free(m); out: FRELE(fp, p); return (error); } /* * Get socket name. */ int sys_getsockname(struct proc *p, void *v, register_t *retval) { struct sys_getsockname_args /* { syscallarg(int) fdes; syscallarg(struct sockaddr *) asa; syscallarg(socklen_t *) alen; } */ *uap = v; struct file *fp; struct socket *so; struct mbuf *m = NULL; socklen_t len; int error; if ((error = getsock(p, SCARG(uap, fdes), &fp)) != 0) return (error); error = copyin(SCARG(uap, alen), &len, sizeof (len)); if (error) goto bad; so = fp->f_data; if (so->so_state & SS_YP) { error = ENOTSOCK; goto bad; } error = pledge_socket(p, -1, so->so_state); if (error) goto bad; if (so->so_state & SS_YP) { error = ENOTSOCK; goto bad; } m = m_getclr(M_WAIT, MT_SONAME); solock_shared(so); error = pru_sockaddr(so, m); sounlock_shared(so); if (error) goto bad; error = copyaddrout(p, m, SCARG(uap, asa), len, SCARG(uap, alen)); bad: FRELE(fp, p); m_freem(m); return (error); } /* * Get name of peer for connected socket. */ int sys_getpeername(struct proc *p, void *v, register_t *retval) { struct sys_getpeername_args /* { syscallarg(int) fdes; syscallarg(struct sockaddr *) asa; syscallarg(socklen_t *) alen; } */ *uap = v; struct file *fp; struct socket *so; struct mbuf *m = NULL; socklen_t len; int error; if ((error = getsock(p, SCARG(uap, fdes), &fp)) != 0) return (error); so = fp->f_data; error = pledge_socket(p, -1, so->so_state); if (error) goto bad; if (so->so_state & SS_YP) { error = ENOTSOCK; goto bad; } if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto bad; } error = copyin(SCARG(uap, alen), &len, sizeof (len)); if (error) goto bad; m = m_getclr(M_WAIT, MT_SONAME); solock_shared(so); error = pru_peeraddr(so, m); sounlock_shared(so); if (error) goto bad; error = copyaddrout(p, m, SCARG(uap, asa), len, SCARG(uap, alen)); bad: FRELE(fp, p); m_freem(m); return (error); } int sockargs(struct mbuf **mp, const void *buf, size_t buflen, int type) { struct sockaddr *sa; struct mbuf *m; int error; /* * We can't allow socket names > UCHAR_MAX in length, since that * will overflow sa_len. Also, control data more than MCLBYTES in * length is just too much. * Memory for sa_len and sa_family must exist. */ if ((buflen > (type == MT_SONAME ? UCHAR_MAX : MCLBYTES)) || (type == MT_SONAME && buflen < offsetof(struct sockaddr, sa_data))) return (EINVAL); /* Allocate an mbuf to hold the arguments. */ m = m_get(M_WAIT, type); if (buflen > MLEN) { MCLGET(m, M_WAITOK); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } } m->m_len = buflen; error = copyin(buf, mtod(m, caddr_t), buflen); if (error) { (void) m_free(m); return (error); } *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); sa->sa_len = buflen; } return (0); } int getsock(struct proc *p, int fdes, struct file **fpp) { struct file *fp; fp = fd_getfile(p->p_fd, fdes); if (fp == NULL) return (EBADF); if (fp->f_type != DTYPE_SOCKET) { FRELE(fp, p); return (ENOTSOCK); } *fpp = fp; return (0); } int sys_setrtable(struct proc *p, void *v, register_t *retval) { struct sys_setrtable_args /* { syscallarg(int) rtableid; } */ *uap = v; u_int ps_rtableid = p->p_p->ps_rtableid; int rtableid, error; rtableid = SCARG(uap, rtableid); if (ps_rtableid == rtableid) return (0); if (ps_rtableid != 0 && (error = suser(p)) != 0) return (error); if (rtableid < 0 || !rtable_exists((u_int)rtableid)) return (EINVAL); p->p_p->ps_rtableid = (u_int)rtableid; return (0); } int sys_getrtable(struct proc *p, void *v, register_t *retval) { *retval = (int)p->p_p->ps_rtableid; return (0); } int copyaddrout(struct proc *p, struct mbuf *name, struct sockaddr *sa, socklen_t buflen, socklen_t *outlen) { int error; socklen_t namelen = name->m_len; /* SHOULD COPY OUT A CHAIN HERE */ error = copyout(mtod(name, caddr_t), sa, MIN(buflen, namelen)); if (error == 0) { #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrsockaddr(p, mtod(name, caddr_t), namelen); #endif error = copyout(&namelen, outlen, sizeof(*outlen)); } return (error); } #ifndef SMALL_KERNEL int ypsockargs(struct mbuf **mp, const void *buf, size_t buflen, int type) { struct sockaddr *sa; struct mbuf *m; /* * We can't allow socket names > UCHAR_MAX in length, since that * will overflow sa_len. Also, control data more than MCLBYTES in * length is just too much. * Memory for sa_len and sa_family must exist. */ if ((buflen > (type == MT_SONAME ? UCHAR_MAX : MCLBYTES)) || (type == MT_SONAME && buflen < offsetof(struct sockaddr, sa_data))) return (EINVAL); /* Allocate an mbuf to hold the arguments. */ m = m_get(M_WAIT, type); if (buflen > MLEN) { MCLGET(m, M_WAITOK); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } } m->m_len = buflen; bcopy(buf, mtod(m, caddr_t), buflen); *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); sa->sa_len = buflen; } return (0); } #endif /* SMALL_KERNEL */ int sys_ypconnect(struct proc *p, void *v, register_t *retval) { #ifdef SMALL_KERNEL return EAFNOSUPPORT; #else struct sys_ypconnect_args /* { syscallarg(int) type; } */ *uap = v; struct nameidata nid; struct vattr va; struct uio uio; struct iovec iov; struct filedesc *fdp = p->p_fd; struct socket *so; struct file *fp; struct flock fl; char *name; struct mbuf *nam = NULL; int error, fd = -1; struct ypbinding { u_short ypbind_port; int status; in_addr_t in; u_short ypserv_udp_port; u_short garbage; u_short ypserv_tcp_port; } __packed data; struct sockaddr_in ypsin; if (!domainname[0] || strchr(domainname, '/')) return EAFNOSUPPORT; switch (SCARG(uap, type)) { case SOCK_STREAM: case SOCK_DGRAM: break; default: return EAFNOSUPPORT; } if (p->p_p->ps_flags & PS_CHROOT) return EACCES; KERNEL_LOCK(); name = pool_get(&namei_pool, PR_WAITOK); snprintf(name, MAXPATHLEN, "/var/yp/binding/%s.2", domainname); NDINIT(&nid, 0, NOFOLLOW|LOCKLEAF|KERNELPATH, UIO_SYSSPACE, name, p); nid.ni_pledge = PLEDGE_RPATH; error = namei(&nid); pool_put(&namei_pool, name); if (error) goto out; error = VOP_GETATTR(nid.ni_vp, &va, p->p_ucred, p); if (error) goto verror; if (nid.ni_vp->v_type != VREG || va.va_size != sizeof data) { error = EFTYPE; goto verror; } /* * Check that a lock is held on the file (hopefully by ypbind), * otherwise the file might be old */ fl.l_start = 0; fl.l_len = 0; fl.l_pid = 0; fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; error = VOP_ADVLOCK(nid.ni_vp, fdp, F_GETLK, &fl, F_POSIX); if (error) goto verror; if (fl.l_type == F_UNLCK) { error = EOWNERDEAD; goto verror; } iov.iov_base = &data; iov.iov_len = sizeof data; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = iov.iov_len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_procp = p; error = VOP_READ(nid.ni_vp, &uio, 0, p->p_ucred); if (error) { verror: if (nid.ni_vp) vput(nid.ni_vp); out: KERNEL_UNLOCK(); return (error); } vput(nid.ni_vp); KERNEL_UNLOCK(); bzero(&ypsin, sizeof ypsin); ypsin.sin_len = sizeof ypsin; ypsin.sin_family = AF_INET; if (SCARG(uap, type) == SOCK_STREAM) ypsin.sin_port = data.ypserv_tcp_port; else ypsin.sin_port = data.ypserv_udp_port; if (ntohs(ypsin.sin_port) >= IPPORT_RESERVED || ntohs(ypsin.sin_port) == 20) return EPERM; memcpy(&ypsin.sin_addr.s_addr, &data.in, sizeof ypsin.sin_addr.s_addr); error = socreate(AF_INET, &so, SCARG(uap, type), 0); if (error) return (error); error = ypsockargs(&nam, &ypsin, sizeof ypsin, MT_SONAME); if (error) { soclose(so, MSG_DONTWAIT); return (error); } #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrsockaddr(p, mtod(nam, caddr_t), sizeof(struct sockaddr_in)); #endif solock(so); /* Secure YP maps require reserved ports */ if (suser(p) == 0) sotoinpcb(so)->inp_flags |= INP_LOWPORT; error = soconnect(so, nam); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = sosleep_nsec(so, &so->so_timeo, PSOCK | PCATCH, "ypcon", INFSLP); if (error) break; } m_freem(nam); so->so_state |= SS_YP; /* impose some restrictions */ sounlock(so); if (error) { soclose(so, MSG_DONTWAIT); return (error); } fdplock(fdp); error = falloc(p, &fp, &fd); if (error) { fdpunlock(fdp); soclose(so, MSG_DONTWAIT); return (error); } fp->f_flag = FREAD | FWRITE | FNONBLOCK; fp->f_type = DTYPE_SOCKET; fp->f_ops = &socketops; fp->f_data = so; fdinsert(fdp, fd, UF_EXCLOSE, fp); fdpunlock(fdp); FRELE(fp, p); *retval = fd; return (error); #endif /* SMALL_KERNEL */ }