/* $OpenBSD: misc.c,v 1.21 2024/11/09 18:03:44 op Exp $ */ /* misc - miscellaneous flex routines */ /* Copyright (c) 1990 The Regents of the University of California. */ /* All rights reserved. */ /* This code is derived from software contributed to Berkeley by */ /* Vern Paxson. */ /* The United States Government has rights in this work pursuant */ /* to contract no. DE-AC03-76SF00098 between the United States */ /* Department of Energy and the University of California. */ /* This file is part of flex. */ /* Redistribution and use in source and binary forms, with or without */ /* modification, are permitted provided that the following conditions */ /* are met: */ /* 1. Redistributions of source code must retain the above copyright */ /* notice, this list of conditions and the following disclaimer. */ /* 2. Redistributions in binary form must reproduce the above copyright */ /* notice, this list of conditions and the following disclaimer in the */ /* documentation and/or other materials provided with the distribution. */ /* Neither the name of the University nor the names of its contributors */ /* may be used to endorse or promote products derived from this software */ /* without specific prior written permission. */ /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ /* PURPOSE. */ #include "flexdef.h" #include "tables.h" #define CMD_IF_TABLES_SER "%if-tables-serialization" #define CMD_TABLES_YYDMAP "%tables-yydmap" #define CMD_DEFINE_YYTABLES "%define-yytables" #define CMD_IF_CPP_ONLY "%if-c++-only" #define CMD_IF_C_ONLY "%if-c-only" #define CMD_IF_C_OR_CPP "%if-c-or-c++" #define CMD_NOT_FOR_HEADER "%not-for-header" #define CMD_OK_FOR_HEADER "%ok-for-header" #define CMD_PUSH "%push" #define CMD_POP "%pop" #define CMD_IF_REENTRANT "%if-reentrant" #define CMD_IF_NOT_REENTRANT "%if-not-reentrant" #define CMD_IF_BISON_BRIDGE "%if-bison-bridge" #define CMD_IF_NOT_BISON_BRIDGE "%if-not-bison-bridge" #define CMD_ENDIF "%endif" /* we allow the skeleton to push and pop. */ struct sko_state { bool dc; /**< do_copy */ }; static struct sko_state *sko_stack = 0; static int sko_len = 0, sko_sz = 0; static void sko_push(bool dc) { if (!sko_stack) { sko_sz = 1; sko_stack = malloc(sizeof(struct sko_state) * sko_sz); if (!sko_stack) flexfatal(_("allocation of sko_stack failed")); sko_len = 0; } if (sko_len >= sko_sz) { sko_sz *= 2; sko_stack = realloc(sko_stack, sizeof(struct sko_state) * sko_sz); } /* initialize to zero and push */ sko_stack[sko_len].dc = dc; sko_len++; } static void sko_peek(bool * dc) { if (sko_len <= 0) flex_die("peek attempt when sko stack is empty"); if (dc) *dc = sko_stack[sko_len - 1].dc; } static void sko_pop(bool * dc) { sko_peek(dc); sko_len--; if (sko_len < 0) flex_die("popped too many times in skeleton."); } /* Append "#define defname value\n" to the running buffer. */ void action_define(const char *defname, int value) { char buf[MAXLINE]; char *cpy; if ((int) strlen(defname) > MAXLINE / 2) { format_pinpoint_message(_ ("name \"%s\" ridiculously long"), defname); return; } snprintf(buf, sizeof(buf), "#define %s %d\n", defname, value); add_action(buf); /* track #defines so we can undef them when we're done. */ cpy = copy_string(defname); buf_append(&defs_buf, &cpy, 1); } /* Append "new_text" to the running buffer. */ void add_action(const char *new_text) { int len = strlen(new_text); while (len + action_index >= action_size - 10 /* slop */ ) { int new_size = action_size * 2; if (new_size <= 0) /* * Increase just a little, to try to avoid overflow * on 16-bit machines. */ action_size += action_size / 8; else action_size = new_size; action_array = reallocate_character_array(action_array, action_size); } strlcpy(&action_array[action_index], new_text, action_size - action_index); action_index += len; } /* allocate_array - allocate memory for an integer array of the given size */ void * allocate_array(int size, size_t element_size) { void *mem; size_t num_bytes = element_size * size; mem = malloc(num_bytes); if (!mem) flexfatal(_ ("memory allocation failed in allocate_array()")); return mem; } /* all_lower - true if a string is all lower-case */ int all_lower(char *str) { while (*str) { if (!isascii((u_char) * str) || !islower((u_char) * str)) return 0; ++str; } return 1; } /* all_upper - true if a string is all upper-case */ int all_upper(char *str) { while (*str) { if (!isascii((u_char) * str) || !isupper((u_char) * str)) return 0; ++str; } return 1; } /* intcmp - compares two integers for use by qsort. */ int intcmp(const void *a, const void *b) { return *(const int *) a - *(const int *) b; } /* check_char - checks a character to make sure it's within the range * we're expecting. If not, generates fatal error message * and exits. */ void check_char(int c) { if (c >= CSIZE) lerrsf(_("bad character '%s' detected in check_char()"), readable_form(c)); if (c >= csize) lerrsf(_ ("scanner requires -8 flag to use the character %s"), readable_form(c)); } /* clower - replace upper-case letter to lower-case */ u_char clower(int c) { return (u_char) ((isascii(c) && isupper(c)) ? tolower(c) : c); } /* copy_string - returns a dynamically allocated copy of a string */ char * copy_string(const char *str) { const char *c1; char *c2; char *copy; unsigned int size; /* find length */ for (c1 = str; *c1; ++c1); size = (c1 - str + 1) * sizeof(char); copy = (char *) malloc(size); if (copy == NULL) flexfatal(_("dynamic memory failure in copy_string()")); for (c2 = copy; (*c2++ = *str++) != 0;); return copy; } /* copy_unsigned_string - * returns a dynamically allocated copy of a (potentially) unsigned string */ u_char * copy_unsigned_string(unsigned char *str) { u_char *c; u_char *copy; /* find length */ for (c = str; *c; ++c); copy = allocate_Character_array(c - str + 1); for (c = copy; (*c++ = *str++) != 0;); return copy; } /* cclcmp - compares two characters for use by qsort with '\0' sorting last. */ int cclcmp(const void *a, const void *b) { if (!*(const u_char *) a) return 1; else if (!*(const u_char *) b) return -1; else return *(const u_char *) a - *(const u_char *) b; } /* dataend - finish up a block of data declarations */ void dataend(void) { /* short circuit any output */ if (gentables) { if (datapos > 0) dataflush(); /* add terminator for initialization; { for vi */ outn(" } ;\n"); } dataline = 0; datapos = 0; } /* dataflush - flush generated data statements */ void dataflush(void) { /* short circuit any output */ if (!gentables) return; outc('\n'); if (++dataline >= NUMDATALINES) { /* * Put out a blank line so that the table is grouped into * large blocks that enable the user to find elements easily. */ outc('\n'); dataline = 0; } /* Reset the number of characters written on the current line. */ datapos = 0; } /* flexerror - report an error message and terminate */ void flexerror(const char *msg) { fprintf(stderr, "%s: %s\n", program_name, msg); flexend(1); } /* flexfatal - report a fatal error message and terminate */ void flexfatal(const char *msg) { fprintf(stderr, _("%s: fatal internal error, %s\n"), program_name, msg); FLEX_EXIT(1); } /* htoi - convert a hexadecimal digit string to an integer value */ int htoi(unsigned char str[]) { unsigned int result; (void) sscanf((char *) str, "%x", &result); return result; } /* lerrif - report an error message formatted with one integer argument */ void lerrif(const char *msg, int arg) { char errmsg[MAXLINE]; snprintf(errmsg, sizeof(errmsg), msg, arg); flexerror(errmsg); } /* lerrsf - report an error message formatted with one string argument */ void lerrsf(const char *msg, const char arg[]) { char errmsg[MAXLINE]; snprintf(errmsg, sizeof(errmsg) - 1, msg, arg); errmsg[sizeof(errmsg) - 1] = 0; /* ensure NULL termination */ flexerror(errmsg); } /* lerrsf_fatal - as lerrsf, but call flexfatal */ void lerrsf_fatal(const char *msg, const char arg[]) { char errmsg[MAXLINE]; snprintf(errmsg, sizeof(errmsg) - 1, msg, arg); errmsg[sizeof(errmsg) - 1] = 0; /* ensure NULL termination */ flexfatal(errmsg); } /* line_directive_out - spit out a "#line" statement */ void line_directive_out(FILE *output_file, int do_infile) { char directive[MAXLINE], filename[MAXLINE]; char *s1, *s2, *s3; static const char *line_fmt = "#line %d \"%s\"\n"; if (!gen_line_dirs) return; s1 = do_infile ? infilename : "M4_YY_OUTFILE_NAME"; if (do_infile && !s1) s1 = ""; s2 = filename; s3 = &filename[sizeof(filename) - 2]; while (s2 < s3 && *s1) { if (*s1 == '\\') /* Escape the '\' */ *s2++ = '\\'; *s2++ = *s1++; } *s2 = '\0'; if (do_infile) snprintf(directive, sizeof(directive), line_fmt, linenum, filename); else { snprintf(directive, sizeof(directive), line_fmt, 0, filename); } /* * If output_file is nil then we should put the directive in the * accumulated actions. */ if (output_file) { fputs(directive, output_file); } else add_action(directive); } /* mark_defs1 - mark the current position in the action array as * representing where the user's section 1 definitions end * and the prolog begins */ void mark_defs1(void) { defs1_offset = 0; action_array[action_index++] = '\0'; action_offset = prolog_offset = action_index; action_array[action_index] = '\0'; } /* mark_prolog - mark the current position in the action array as * representing the end of the action prolog */ void mark_prolog(void) { action_array[action_index++] = '\0'; action_offset = action_index; action_array[action_index] = '\0'; } /* mk2data - generate a data statement for a two-dimensional array * * Generates a data statement initializing the current 2-D array to "value". */ void mk2data(int value) { /* short circuit any output */ if (!gentables) return; if (datapos >= NUMDATAITEMS) { outc(','); dataflush(); } if (datapos == 0) /* Indent. */ out(" "); else outc(','); ++datapos; out_dec("%5d", value); } /* mkdata - generate a data statement * * Generates a data statement initializing the current array element to * "value". */ void mkdata(int value) { /* short circuit any output */ if (!gentables) return; if (datapos >= NUMDATAITEMS) { outc(','); dataflush(); } if (datapos == 0) /* Indent. */ out(" "); else outc(','); ++datapos; out_dec("%5d", value); } /* myctoi - return the integer represented by a string of digits */ int myctoi(const char *array) { int val = 0; (void) sscanf(array, "%d", &val); return val; } /* myesc - return character corresponding to escape sequence */ u_char myesc(unsigned char array[]) { u_char c, esc_char; switch (array[1]) { case 'b': return '\b'; case 'f': return '\f'; case 'n': return '\n'; case 'r': return '\r'; case 't': return '\t'; #if defined (__STDC__) case 'a': return '\a'; case 'v': return '\v'; #else case 'a': return '\007'; case 'v': return '\013'; #endif case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { /* \ */ int sptr = 1; while (isascii(array[sptr]) && isdigit(array[sptr])) /* * Don't increment inside loop control * because if isdigit() is a macro it might * expand into multiple increments ... */ ++sptr; c = array[sptr]; array[sptr] = '\0'; esc_char = otoi(array + 1); array[sptr] = c; return esc_char; } case 'x': { /* \x */ int sptr = 2; while (isascii(array[sptr]) && isxdigit(array[sptr])) /* * Don't increment inside loop control * because if isdigit() is a macro it might * expand into multiple increments ... */ ++sptr; c = array[sptr]; array[sptr] = '\0'; esc_char = htoi(array + 2); array[sptr] = c; return esc_char; } default: return array[1]; } } /* otoi - convert an octal digit string to an integer value */ int otoi(unsigned char str[]) { unsigned int result; (void) sscanf((char *) str, "%o", &result); return result; } /* out - various flavors of outputting a (possibly formatted) string for the * generated scanner, keeping track of the line count. */ void out(const char *str) { fputs(str, stdout); } void out_dec(const char *fmt, int n) { fprintf(stdout, fmt, n); } void out_dec2(const char *fmt, int n1, int n2) { fprintf(stdout, fmt, n1, n2); } void out_hex(const char *fmt, unsigned int x) { fprintf(stdout, fmt, x); } void out_str(const char *fmt, const char str[]) { fprintf(stdout, fmt, str); } void out_str3(const char *fmt, const char s1[], const char s2[], const char s3[]) { fprintf(stdout, fmt, s1, s2, s3); } void out_str_dec(const char *fmt, const char str[], int n) { fprintf(stdout, fmt, str, n); } void outc(int c) { fputc(c, stdout); } void outn(const char *str) { fputs(str, stdout); fputc('\n', stdout); } /** Print "m4_define( [[def]], [[val]])m4_dnl\n". * @param def The m4 symbol to define. * @param val The definition; may be NULL. * @return buf */ void out_m4_define(const char *def, const char *val) { const char *fmt = "m4_define( [[%s]], [[%s]])m4_dnl\n"; fprintf(stdout, fmt, def, val ? val : ""); } /* readable_form - return the human-readable form of a character * * The returned string is in static storage. */ char * readable_form(int c) { static char rform[10]; if ((c >= 0 && c < 32) || c >= 127) { switch (c) { case '\b': return "\\b"; case '\f': return "\\f"; case '\n': return "\\n"; case '\r': return "\\r"; case '\t': return "\\t"; #if defined (__STDC__) case '\a': return "\\a"; case '\v': return "\\v"; #endif default: snprintf(rform, sizeof(rform), "\\%.3o", (unsigned int) c); return rform; } } else if (c == ' ') return "' '"; else { rform[0] = c; rform[1] = '\0'; return rform; } } /* reallocate_array - increase the size of a dynamic array */ void * reallocate_array(void *array, int size, size_t element_size) { void *new_array; size_t num_bytes = element_size * size; new_array = realloc(array, num_bytes); if (!new_array) flexfatal(_("attempt to increase array size failed")); return new_array; } /* skelout - write out one section of the skeleton file * * Description * Copies skelfile or skel array to stdout until a line beginning with * "%%" or EOF is found. */ void skelout(void) { char buf_storage[MAXLINE]; char *buf = buf_storage; bool do_copy = true; /* "reset" the state by clearing the buffer and pushing a '1' */ if (sko_len > 0) sko_peek(&do_copy); sko_len = 0; sko_push(do_copy = true); /* * Loop pulling lines either from the skelfile, if we're using one, * or from the skel[] array. */ while (skelfile ? (fgets(buf, MAXLINE, skelfile) != NULL) : ((buf = (char *) skel[skel_ind++]) != 0)) { if (skelfile) chomp(buf); /* copy from skel array */ if (buf[0] == '%') { /* control line */ /* print the control line as a comment. */ if (ddebug && buf[1] != '#') { if (buf[strlen(buf) - 1] == '\\') out_str("/* %s */\\\n", buf); else out_str("/* %s */\n", buf); } /* * We've been accused of using cryptic markers in the * skel. So we'll use * emacs-style-hyphenated-commands. We might consider * a hash if this if-else-if-else chain gets too * large. */ #define cmd_match(s) (strncmp(buf,(s),strlen(s))==0) if (buf[1] == '%') { /* %% is a break point for skelout() */ return; } else if (cmd_match(CMD_PUSH)) { sko_push(do_copy); if (ddebug) { out_str("/*(state = (%s) */", do_copy ? "true" : "false"); } out_str("%s\n", buf[strlen(buf) - 1] == '\\' ? "\\" : ""); } else if (cmd_match(CMD_POP)) { sko_pop(&do_copy); if (ddebug) { out_str("/*(state = (%s) */", do_copy ? "true" : "false"); } out_str("%s\n", buf[strlen(buf) - 1] == '\\' ? "\\" : ""); } else if (cmd_match(CMD_IF_REENTRANT)) { sko_push(do_copy); do_copy = reentrant && do_copy; } else if (cmd_match(CMD_IF_NOT_REENTRANT)) { sko_push(do_copy); do_copy = !reentrant && do_copy; } else if (cmd_match(CMD_IF_BISON_BRIDGE)) { sko_push(do_copy); do_copy = bison_bridge_lval && do_copy; } else if (cmd_match(CMD_IF_NOT_BISON_BRIDGE)) { sko_push(do_copy); do_copy = !bison_bridge_lval && do_copy; } else if (cmd_match(CMD_ENDIF)) { sko_pop(&do_copy); } else if (cmd_match(CMD_IF_TABLES_SER)) { do_copy = do_copy && tablesext; } else if (cmd_match(CMD_TABLES_YYDMAP)) { if (tablesext && yydmap_buf.elts) outn((char *) (yydmap_buf.elts)); } else if (cmd_match(CMD_DEFINE_YYTABLES)) { out_str("#define YYTABLES_NAME \"%s\"\n", tablesname ? tablesname : "yytables"); } else if (cmd_match(CMD_IF_CPP_ONLY)) { /* only for C++ */ sko_push(do_copy); do_copy = C_plus_plus; } else if (cmd_match(CMD_IF_C_ONLY)) { /* %- only for C */ sko_push(do_copy); do_copy = !C_plus_plus; } else if (cmd_match(CMD_IF_C_OR_CPP)) { /* %* for C and C++ */ sko_push(do_copy); do_copy = true; } else if (cmd_match(CMD_NOT_FOR_HEADER)) { /* %c begin linkage-only (non-header) code. */ OUT_BEGIN_CODE(); } else if (cmd_match(CMD_OK_FOR_HEADER)) { /* %e end linkage-only code. */ OUT_END_CODE(); } else if (buf[1] == '#') { /* %# a comment in the skel. ignore. */ } else { flexfatal(_("bad line in skeleton file")); } } else if (do_copy) outn(buf); } /* end while */ } /* transition_struct_out - output a yy_trans_info structure * * outputs the yy_trans_info structure with the two elements, element_v and * element_n. Formats the output with spaces and carriage returns. */ void transition_struct_out(int element_v, int element_n) { /* short circuit any output */ if (!gentables) return; out_dec2(" {%4d,%4d },", element_v, element_n); datapos += TRANS_STRUCT_PRINT_LENGTH; if (datapos >= 79 - TRANS_STRUCT_PRINT_LENGTH) { outc('\n'); if (++dataline % 10 == 0) outc('\n'); datapos = 0; } } /* The following is only needed when building flex's parser using certain * broken versions of bison. */ void * yy_flex_xmalloc(int size) { void *result = malloc((size_t) size); if (!result) flexfatal(_ ("memory allocation failed in yy_flex_xmalloc()")); return result; } /* Remove all '\n' and '\r' characters, if any, from the end of str. * str can be any null-terminated string, or NULL. * returns str. */ char * chomp(char *str) { char *p = str; if (!str || !*str) /* s is null or empty string */ return str; /* find end of string minus one */ while (*p) ++p; --p; /* eat newlines */ while (p >= str && (*p == '\r' || *p == '\n')) *p-- = 0; return str; }