/* $OpenBSD: relay.c,v 1.259 2024/01/17 10:01:24 claudio Exp $ */ /* * Copyright (c) 2006 - 2014 Reyk Floeter * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "relayd.h" #define MINIMUM(a, b) (((a) < (b)) ? (a) : (b)) void relay_statistics(int, short, void *); int relay_dispatch_parent(int, struct privsep_proc *, struct imsg *); int relay_dispatch_pfe(int, struct privsep_proc *, struct imsg *); int relay_dispatch_ca(int, struct privsep_proc *, struct imsg *); int relay_dispatch_hce(int, struct privsep_proc *, struct imsg *); void relay_shutdown(void); void relay_protodebug(struct relay *); void relay_ruledebug(struct relay_rule *); void relay_init(struct privsep *, struct privsep_proc *p, void *); void relay_launch(void); int relay_socket(struct sockaddr_storage *, in_port_t, struct protocol *, int, int); int relay_socket_listen(struct sockaddr_storage *, in_port_t, struct protocol *); int relay_socket_connect(struct sockaddr_storage *, in_port_t, struct protocol *, int); void relay_accept(int, short, void *); void relay_input(struct rsession *); void relay_hash_addr(SIPHASH_CTX *, struct sockaddr_storage *, int); int relay_tls_ctx_create(struct relay *); void relay_tls_transaction(struct rsession *, struct ctl_relay_event *); void relay_tls_handshake(int, short, void *); void relay_tls_connected(struct ctl_relay_event *); void relay_tls_readcb(int, short, void *); void relay_tls_writecb(int, short, void *); void relay_connect_retry(int, short, void *); void relay_connect_state(struct rsession *, struct ctl_relay_event *, enum relay_state); extern void bufferevent_read_pressure_cb(struct evbuffer *, size_t, size_t, void *); volatile int relay_sessions; volatile int relay_inflight = 0; objid_t relay_conid; static struct relayd *env = NULL; static struct privsep_proc procs[] = { { "parent", PROC_PARENT, relay_dispatch_parent }, { "pfe", PROC_PFE, relay_dispatch_pfe }, { "ca", PROC_CA, relay_dispatch_ca }, { "hce", PROC_HCE, relay_dispatch_hce }, }; void relay(struct privsep *ps, struct privsep_proc *p) { env = ps->ps_env; proc_run(ps, p, procs, nitems(procs), relay_init, NULL); relay_http(env); } void relay_shutdown(void) { config_purge(env, CONFIG_ALL); usleep(200); /* XXX relay needs to shutdown last */ } void relay_ruledebug(struct relay_rule *rule) { struct kv *kv = NULL; u_int i; char buf[NI_MAXHOST]; fprintf(stderr, "\t\t"); switch (rule->rule_action) { case RULE_ACTION_MATCH: fprintf(stderr, "match "); break; case RULE_ACTION_BLOCK: fprintf(stderr, "block "); break; case RULE_ACTION_PASS: fprintf(stderr, "pass "); break; } switch (rule->rule_dir) { case RELAY_DIR_ANY: break; case RELAY_DIR_REQUEST: fprintf(stderr, "request "); break; case RELAY_DIR_RESPONSE: fprintf(stderr, "response "); break; default: return; /* NOTREACHED */ break; } if (rule->rule_flags & RULE_FLAG_QUICK) fprintf(stderr, "quick "); switch (rule->rule_af) { case AF_INET: fprintf(stderr, "inet "); break; case AF_INET6: fprintf(stderr, "inet6 "); break; } if (rule->rule_src.addr.ss_family != AF_UNSPEC) fprintf(stderr, "from %s/%d ", print_host(&rule->rule_src.addr, buf, sizeof(buf)), rule->rule_src.addr_mask); if (rule->rule_dst.addr.ss_family != AF_UNSPEC) fprintf(stderr, "to %s/%d ", print_host(&rule->rule_dst.addr, buf, sizeof(buf)), rule->rule_dst.addr_mask); for (i = 1; i < KEY_TYPE_MAX; i++) { kv = &rule->rule_kv[i]; if (kv->kv_type != i) continue; switch (kv->kv_type) { case KEY_TYPE_COOKIE: fprintf(stderr, "cookie "); break; case KEY_TYPE_HEADER: fprintf(stderr, "header "); break; case KEY_TYPE_PATH: fprintf(stderr, "path "); break; case KEY_TYPE_QUERY: fprintf(stderr, "query "); break; case KEY_TYPE_URL: fprintf(stderr, "url "); break; default: continue; } switch (kv->kv_option) { case KEY_OPTION_APPEND: fprintf(stderr, "append "); break; case KEY_OPTION_SET: fprintf(stderr, "set "); break; case KEY_OPTION_REMOVE: fprintf(stderr, "remove "); break; case KEY_OPTION_HASH: fprintf(stderr, "hash "); break; case KEY_OPTION_LOG: fprintf(stderr, "log "); break; case KEY_OPTION_STRIP: fprintf(stderr, "strip "); break; case KEY_OPTION_NONE: break; } switch (kv->kv_digest) { case DIGEST_SHA1: case DIGEST_MD5: fprintf(stderr, "digest "); break; default: break; } int kvv = (kv->kv_option == KEY_OPTION_STRIP || kv->kv_value == NULL); fprintf(stderr, "%s%s%s%s%s%s ", kv->kv_key == NULL ? "" : "\"", kv->kv_key == NULL ? "" : kv->kv_key, kv->kv_key == NULL ? "" : "\"", kvv ? "" : " value \"", kv->kv_value == NULL ? "" : kv->kv_value, kvv ? "" : "\""); } if (rule->rule_tablename[0]) fprintf(stderr, "forward to <%s> ", rule->rule_tablename); if (rule->rule_tag == -1) fprintf(stderr, "no tag "); else if (rule->rule_tag && rule->rule_tagname[0]) fprintf(stderr, "tag \"%s\" ", rule->rule_tagname); if (rule->rule_tagged && rule->rule_taggedname[0]) fprintf(stderr, "tagged \"%s\" ", rule->rule_taggedname); if (rule->rule_label == -1) fprintf(stderr, "no label "); else if (rule->rule_label && rule->rule_labelname[0]) fprintf(stderr, "label \"%s\" ", rule->rule_labelname); fprintf(stderr, "\n"); } void relay_protodebug(struct relay *rlay) { struct protocol *proto = rlay->rl_proto; struct relay_rule *rule = NULL; fprintf(stderr, "protocol %d: name %s\n", proto->id, proto->name); fprintf(stderr, "\tflags: %s, relay flags: %s\n", printb_flags(proto->flags, F_BITS), printb_flags(rlay->rl_conf.flags, F_BITS)); if (proto->tcpflags) fprintf(stderr, "\ttcp flags: %s\n", printb_flags(proto->tcpflags, TCPFLAG_BITS)); if ((rlay->rl_conf.flags & (F_TLS|F_TLSCLIENT)) && proto->tlsflags) fprintf(stderr, "\ttls flags: %s\n", printb_flags(proto->tlsflags, TLSFLAG_BITS)); fprintf(stderr, "\ttls session tickets: %s\n", (proto->tickets == 1) ? "enabled" : "disabled"); fprintf(stderr, "\ttype: "); switch (proto->type) { case RELAY_PROTO_TCP: fprintf(stderr, "tcp\n"); break; case RELAY_PROTO_HTTP: fprintf(stderr, "http\n"); break; case RELAY_PROTO_DNS: fprintf(stderr, "dns\n"); break; } rule = TAILQ_FIRST(&proto->rules); while (rule != NULL) { relay_ruledebug(rule); rule = TAILQ_NEXT(rule, rule_entry); } } int relay_privinit(struct relay *rlay) { log_debug("%s: adding relay %s", __func__, rlay->rl_conf.name); if (log_getverbose() > 1) relay_protodebug(rlay); switch (rlay->rl_proto->type) { case RELAY_PROTO_DNS: relay_udp_privinit(rlay); break; case RELAY_PROTO_TCP: break; case RELAY_PROTO_HTTP: break; } if (rlay->rl_conf.flags & F_UDP) rlay->rl_s = relay_udp_bind(&rlay->rl_conf.ss, rlay->rl_conf.port, rlay->rl_proto); else rlay->rl_s = relay_socket_listen(&rlay->rl_conf.ss, rlay->rl_conf.port, rlay->rl_proto); if (rlay->rl_s == -1) return (-1); return (0); } void relay_init(struct privsep *ps, struct privsep_proc *p, void *arg) { struct timeval tv; if (config_init(ps->ps_env) == -1) fatal("failed to initialize configuration"); /* We use a custom shutdown callback */ p->p_shutdown = relay_shutdown; /* Unlimited file descriptors (use system limits) */ socket_rlimit(-1); if (pledge("stdio recvfd inet", NULL) == -1) fatal("pledge"); /* Schedule statistics timer */ evtimer_set(&env->sc_statev, relay_statistics, ps); bcopy(&env->sc_conf.statinterval, &tv, sizeof(tv)); evtimer_add(&env->sc_statev, &tv); } void relay_session_publish(struct rsession *s) { proc_compose(env->sc_ps, PROC_PFE, IMSG_SESS_PUBLISH, s, sizeof(*s)); } void relay_session_unpublish(struct rsession *s) { proc_compose(env->sc_ps, PROC_PFE, IMSG_SESS_UNPUBLISH, &s->se_id, sizeof(s->se_id)); } void relay_statistics(int fd, short events, void *arg) { struct privsep *ps = arg; struct relay *rlay; struct ctl_stats crs, *cur; struct timeval tv, tv_now; int resethour = 0, resetday = 0; struct rsession *con, *next_con; /* * This is a hack to calculate some average statistics. * It doesn't try to be very accurate, but could be improved... */ timerclear(&tv); getmonotime(&tv_now); TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) { bzero(&crs, sizeof(crs)); resethour = resetday = 0; cur = &rlay->rl_stats[ps->ps_instance]; cur->cnt += cur->last; cur->tick++; cur->avg = (cur->last + cur->avg) / 2; cur->last_hour += cur->last; if ((cur->tick % (3600 / env->sc_conf.statinterval.tv_sec)) == 0) { cur->avg_hour = (cur->last_hour + cur->avg_hour) / 2; resethour++; } cur->last_day += cur->last; if ((cur->tick % (86400 / env->sc_conf.statinterval.tv_sec)) == 0) { cur->avg_day = (cur->last_day + cur->avg_day) / 2; resethour++; } bcopy(cur, &crs, sizeof(crs)); cur->last = 0; if (resethour) cur->last_hour = 0; if (resetday) cur->last_day = 0; crs.id = rlay->rl_conf.id; crs.proc = ps->ps_instance; proc_compose(env->sc_ps, PROC_PFE, IMSG_STATISTICS, &crs, sizeof(crs)); for (con = SPLAY_ROOT(&rlay->rl_sessions); con != NULL; con = next_con) { next_con = SPLAY_NEXT(session_tree, &rlay->rl_sessions, con); timersub(&tv_now, &con->se_tv_last, &tv); if (timercmp(&tv, &rlay->rl_conf.timeout, >=)) relay_close(con, "hard timeout", 1); } } /* Schedule statistics timer */ evtimer_set(&env->sc_statev, relay_statistics, ps); bcopy(&env->sc_conf.statinterval, &tv, sizeof(tv)); evtimer_add(&env->sc_statev, &tv); } void relay_launch(void) { void (*callback)(int, short, void *); struct relay *rlay; struct host *host; struct relay_table *rlt; TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) { if ((rlay->rl_conf.flags & (F_TLS|F_TLSCLIENT)) && relay_tls_ctx_create(rlay) == -1) fatalx("%s: failed to create TLS context", __func__); TAILQ_FOREACH(rlt, &rlay->rl_tables, rlt_entry) { /* * set rule->rule_table in advance and save time * looking up for this later on rule/connection * evalution */ rule_settable(&rlay->rl_proto->rules, rlt); rlt->rlt_index = 0; rlt->rlt_nhosts = 0; TAILQ_FOREACH(host, &rlt->rlt_table->hosts, entry) { if (rlt->rlt_nhosts >= RELAY_MAXHOSTS) fatal("%s: too many hosts in table", __func__); host->idx = rlt->rlt_nhosts; rlt->rlt_host[rlt->rlt_nhosts++] = host; } log_info("adding %d hosts from table %s%s", rlt->rlt_nhosts, rlt->rlt_table->conf.name, rlt->rlt_table->conf.check ? "" : " (no check)"); } switch (rlay->rl_proto->type) { case RELAY_PROTO_DNS: relay_udp_init(env, rlay); break; case RELAY_PROTO_TCP: case RELAY_PROTO_HTTP: relay_http_init(rlay); /* Use defaults */ break; } log_debug("%s: running relay %s", __func__, rlay->rl_conf.name); rlay->rl_up = HOST_UP; if (rlay->rl_conf.flags & F_UDP) callback = relay_udp_server; else callback = relay_accept; event_set(&rlay->rl_ev, rlay->rl_s, EV_READ, callback, rlay); event_add(&rlay->rl_ev, NULL); evtimer_set(&rlay->rl_evt, callback, rlay); } } int relay_socket_af(struct sockaddr_storage *ss, in_port_t port) { switch (ss->ss_family) { case AF_INET: ((struct sockaddr_in *)ss)->sin_port = port; ((struct sockaddr_in *)ss)->sin_len = sizeof(struct sockaddr_in); break; case AF_INET6: ((struct sockaddr_in6 *)ss)->sin6_port = port; ((struct sockaddr_in6 *)ss)->sin6_len = sizeof(struct sockaddr_in6); break; default: return (-1); } return (0); } in_port_t relay_socket_getport(struct sockaddr_storage *ss) { switch (ss->ss_family) { case AF_INET: return (((struct sockaddr_in *)ss)->sin_port); case AF_INET6: return (((struct sockaddr_in6 *)ss)->sin6_port); default: return (0); } /* NOTREACHED */ return (0); } int relay_socket(struct sockaddr_storage *ss, in_port_t port, struct protocol *proto, int fd, int reuseport) { struct linger lng; int s = -1, val; if (relay_socket_af(ss, port) == -1) goto bad; s = fd == -1 ? socket(ss->ss_family, SOCK_STREAM | SOCK_NONBLOCK, IPPROTO_TCP) : fd; if (s == -1) goto bad; /* * Socket options */ bzero(&lng, sizeof(lng)); if (setsockopt(s, SOL_SOCKET, SO_LINGER, &lng, sizeof(lng)) == -1) goto bad; if (reuseport) { val = 1; if (setsockopt(s, SOL_SOCKET, SO_REUSEPORT, &val, sizeof(int)) == -1) goto bad; } if (proto->tcpflags & TCPFLAG_BUFSIZ) { val = proto->tcpbufsiz; if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, &val, sizeof(val)) == -1) goto bad; val = proto->tcpbufsiz; if (setsockopt(s, SOL_SOCKET, SO_SNDBUF, &val, sizeof(val)) == -1) goto bad; } /* * IP options */ if (proto->tcpflags & TCPFLAG_IPTTL) { val = (int)proto->tcpipttl; switch (ss->ss_family) { case AF_INET: if (setsockopt(s, IPPROTO_IP, IP_TTL, &val, sizeof(val)) == -1) goto bad; break; case AF_INET6: if (setsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS, &val, sizeof(val)) == -1) goto bad; break; } } if (proto->tcpflags & TCPFLAG_IPMINTTL) { val = (int)proto->tcpipminttl; switch (ss->ss_family) { case AF_INET: if (setsockopt(s, IPPROTO_IP, IP_MINTTL, &val, sizeof(val)) == -1) goto bad; break; case AF_INET6: if (setsockopt(s, IPPROTO_IPV6, IPV6_MINHOPCOUNT, &val, sizeof(val)) == -1) goto bad; break; } } /* * TCP options */ if (proto->tcpflags & (TCPFLAG_NODELAY|TCPFLAG_NNODELAY)) { if (proto->tcpflags & TCPFLAG_NNODELAY) val = 0; else val = 1; if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val)) == -1) goto bad; } if (proto->tcpflags & (TCPFLAG_SACK|TCPFLAG_NSACK)) { if (proto->tcpflags & TCPFLAG_NSACK) val = 0; else val = 1; if (setsockopt(s, IPPROTO_TCP, TCP_SACK_ENABLE, &val, sizeof(val)) == -1) goto bad; } return (s); bad: if (s != -1) close(s); return (-1); } int relay_socket_connect(struct sockaddr_storage *ss, in_port_t port, struct protocol *proto, int fd) { int s; if ((s = relay_socket(ss, port, proto, fd, 0)) == -1) return (-1); if (connect(s, (struct sockaddr *)ss, ss->ss_len) == -1) { if (errno != EINPROGRESS) goto bad; } return (s); bad: close(s); return (-1); } int relay_socket_listen(struct sockaddr_storage *ss, in_port_t port, struct protocol *proto) { int s; if ((s = relay_socket(ss, port, proto, -1, 1)) == -1) return (-1); if (bind(s, (struct sockaddr *)ss, ss->ss_len) == -1) goto bad; if (listen(s, proto->tcpbacklog) == -1) goto bad; return (s); bad: close(s); return (-1); } void relay_connected(int fd, short sig, void *arg) { char obuf[128]; struct rsession *con = arg; struct relay *rlay = con->se_relay; struct protocol *proto = rlay->rl_proto; evbuffercb outrd = relay_read; evbuffercb outwr = relay_write; struct bufferevent *bev; struct ctl_relay_event *out = &con->se_out; char *msg; socklen_t len; int error; if (sig == EV_TIMEOUT) { relay_abort_http(con, 504, "connect timeout", 0); return; } len = sizeof(error); if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &error, &len) == -1) { relay_abort_http(con, 500, "getsockopt failed", 0); return; } if (error) { errno = error; if (asprintf(&msg, "socket error: %s", strerror(error)) >= 0) { relay_abort_http(con, 500, msg, 0); free(msg); return; } else { relay_abort_http(con, 500, "socket error and asprintf failed", 0); return; } } if ((rlay->rl_conf.flags & F_TLSCLIENT) && (out->tls == NULL)) { relay_tls_transaction(con, out); return; } DPRINTF("%s: session %d: successful", __func__, con->se_id); /* Log destination if it was changed in a keep-alive connection */ if ((con->se_table != con->se_table0) && (env->sc_conf.opts & (RELAYD_OPT_LOGCON|RELAYD_OPT_LOGCONERR))) { con->se_table0 = con->se_table; memset(&obuf, 0, sizeof(obuf)); (void)print_host(&con->se_out.ss, obuf, sizeof(obuf)); if (asprintf(&msg, " -> %s:%d", obuf, ntohs(con->se_out.port)) == -1) { relay_abort_http(con, 500, "connection changed and asprintf failed", 0); return; } relay_log(con, msg); free(msg); } switch (rlay->rl_proto->type) { case RELAY_PROTO_HTTP: if (relay_httpdesc_init(out) == -1) { relay_close(con, "failed to allocate http descriptor", 1); return; } con->se_out.toread = TOREAD_HTTP_HEADER; outrd = relay_read_http; break; case RELAY_PROTO_TCP: /* Use defaults */ break; default: fatalx("%s: unknown protocol", __func__); } /* * Relay <-> Server */ bev = bufferevent_new(fd, outrd, outwr, relay_error, &con->se_out); if (bev == NULL) { relay_abort_http(con, 500, "failed to allocate output buffer event", 0); return; } /* write pending output buffer now */ if (bufferevent_write_buffer(bev, con->se_out.output)) { relay_abort_http(con, 500, strerror(errno), 0); return; } con->se_out.bev = bev; /* Initialize the TLS wrapper */ if ((rlay->rl_conf.flags & F_TLSCLIENT) && (out->tls != NULL)) relay_tls_connected(out); bufferevent_settimeout(bev, rlay->rl_conf.timeout.tv_sec, rlay->rl_conf.timeout.tv_sec); bufferevent_setwatermark(bev, EV_WRITE, RELAY_MIN_PREFETCHED * proto->tcpbufsiz, 0); bufferevent_enable(bev, EV_READ|EV_WRITE); if (con->se_in.bev) bufferevent_enable(con->se_in.bev, EV_READ); if (relay_splice(&con->se_out) == -1) relay_close(con, strerror(errno), 1); } void relay_input(struct rsession *con) { struct relay *rlay = con->se_relay; struct protocol *proto = rlay->rl_proto; evbuffercb inrd = relay_read; evbuffercb inwr = relay_write; switch (rlay->rl_proto->type) { case RELAY_PROTO_HTTP: if (relay_http_priv_init(con) == -1) { relay_close(con, "failed to allocate http descriptor", 1); return; } con->se_in.toread = TOREAD_HTTP_HEADER; inrd = relay_read_http; break; case RELAY_PROTO_TCP: /* Use defaults */ break; default: fatalx("%s: unknown protocol", __func__); } /* * Client <-> Relay */ con->se_in.bev = bufferevent_new(con->se_in.s, inrd, inwr, relay_error, &con->se_in); if (con->se_in.bev == NULL) { relay_close(con, "failed to allocate input buffer event", 1); return; } /* Initialize the TLS wrapper */ if ((rlay->rl_conf.flags & F_TLS) && con->se_in.tls != NULL) relay_tls_connected(&con->se_in); bufferevent_settimeout(con->se_in.bev, rlay->rl_conf.timeout.tv_sec, rlay->rl_conf.timeout.tv_sec); bufferevent_setwatermark(con->se_in.bev, EV_WRITE, RELAY_MIN_PREFETCHED * proto->tcpbufsiz, 0); bufferevent_enable(con->se_in.bev, EV_READ|EV_WRITE); if (relay_splice(&con->se_in) == -1) relay_close(con, strerror(errno), 1); } void relay_write(struct bufferevent *bev, void *arg) { struct ctl_relay_event *cre = arg; struct rsession *con = cre->con; getmonotime(&con->se_tv_last); if (con->se_done && EVBUFFER_LENGTH(EVBUFFER_OUTPUT(bev)) == 0) goto done; if (cre->dst->bev) bufferevent_enable(cre->dst->bev, EV_READ); if (relay_splice(cre->dst) == -1) goto fail; return; done: relay_close(con, "last write (done)", 0); return; fail: relay_close(con, strerror(errno), 1); } void relay_dump(struct ctl_relay_event *cre, const void *buf, size_t len) { if (!len) return; /* * This function will dump the specified message directly * to the underlying session, without waiting for success * of non-blocking events etc. This is useful to print an * error message before gracefully closing the session. */ if (cre->tls != NULL) (void)tls_write(cre->tls, buf, len); else (void)write(cre->s, buf, len); } void relay_read(struct bufferevent *bev, void *arg) { struct ctl_relay_event *cre = arg; struct rsession *con = cre->con; struct protocol *proto = con->se_relay->rl_proto; struct evbuffer *src = EVBUFFER_INPUT(bev); getmonotime(&con->se_tv_last); cre->timedout = 0; if (!EVBUFFER_LENGTH(src)) return; if (relay_bufferevent_write_buffer(cre->dst, src) == -1) goto fail; if (con->se_done) goto done; if (cre->dst->bev) bufferevent_enable(cre->dst->bev, EV_READ); if (cre->dst->bev && EVBUFFER_LENGTH(EVBUFFER_OUTPUT(cre->dst->bev)) > (size_t)RELAY_MAX_PREFETCH * proto->tcpbufsiz) bufferevent_disable(bev, EV_READ); return; done: relay_close(con, "last read (done)", 0); return; fail: relay_close(con, strerror(errno), 1); } /* * Splice sockets from cre to cre->dst if applicable. Returns: * -1 socket splicing has failed * 0 socket splicing is currently not possible * 1 socket splicing was successful */ int relay_splice(struct ctl_relay_event *cre) { struct rsession *con = cre->con; struct relay *rlay = con->se_relay; struct protocol *proto = rlay->rl_proto; struct splice sp; if ((rlay->rl_conf.flags & (F_TLS|F_TLSCLIENT)) || (proto->tcpflags & TCPFLAG_NSPLICE)) return (0); if (cre->splicelen >= 0) return (0); /* still not connected */ if (cre->bev == NULL || cre->dst->bev == NULL) return (0); if (!(cre->toread == TOREAD_UNLIMITED || cre->toread > 0)) { DPRINTF("%s: session %d: splice dir %d, nothing to read %lld", __func__, con->se_id, cre->dir, cre->toread); return (0); } /* do not splice before buffers have not been completely flushed */ if (EVBUFFER_LENGTH(cre->bev->input) || EVBUFFER_LENGTH(cre->dst->bev->output)) { DPRINTF("%s: session %d: splice dir %d, dirty buffer", __func__, con->se_id, cre->dir); bufferevent_disable(cre->bev, EV_READ); return (0); } bzero(&sp, sizeof(sp)); sp.sp_fd = cre->dst->s; sp.sp_max = cre->toread > 0 ? cre->toread : 0; bcopy(&rlay->rl_conf.timeout, &sp.sp_idle, sizeof(sp.sp_idle)); if (setsockopt(cre->s, SOL_SOCKET, SO_SPLICE, &sp, sizeof(sp)) == -1) { log_debug("%s: session %d: splice dir %d failed: %s", __func__, con->se_id, cre->dir, strerror(errno)); return (-1); } cre->splicelen = 0; bufferevent_enable(cre->bev, EV_READ); DPRINTF("%s: session %d: splice dir %d, maximum %lld, successful", __func__, con->se_id, cre->dir, cre->toread); return (1); } int relay_splicelen(struct ctl_relay_event *cre) { struct rsession *con = cre->con; off_t len; socklen_t optlen; if (cre->splicelen < 0) return (0); optlen = sizeof(len); if (getsockopt(cre->s, SOL_SOCKET, SO_SPLICE, &len, &optlen) == -1) { log_debug("%s: session %d: splice dir %d get length failed: %s", __func__, con->se_id, cre->dir, strerror(errno)); return (-1); } DPRINTF("%s: session %d: splice dir %d, length %lld", __func__, con->se_id, cre->dir, len); if (len > cre->splicelen) { getmonotime(&con->se_tv_last); cre->splicelen = len; return (1); } return (0); } int relay_spliceadjust(struct ctl_relay_event *cre) { if (cre->splicelen < 0) return (0); if (relay_splicelen(cre) == -1) return (-1); if (cre->splicelen > 0 && cre->toread > 0) cre->toread -= cre->splicelen; cre->splicelen = -1; return (0); } void relay_error(struct bufferevent *bev, short error, void *arg) { struct ctl_relay_event *cre = arg; struct rsession *con = cre->con; struct evbuffer *dst; DPRINTF("%s: session %d: dir %d state %d to read %lld event error %x", __func__, con->se_id, cre->dir, cre->state, cre->toread, error); if (error & EVBUFFER_TIMEOUT) { if (cre->splicelen >= 0) { bufferevent_enable(bev, EV_READ); } else if (cre->dst->splicelen >= 0) { switch (relay_splicelen(cre->dst)) { case -1: goto fail; case 0: relay_close(con, "buffer event timeout", 1); break; case 1: cre->timedout = 1; bufferevent_enable(bev, EV_READ); break; } } else { relay_close(con, "buffer event timeout", 1); } return; } if (error & EVBUFFER_ERROR && errno == ETIMEDOUT) { if (cre->dst->splicelen >= 0) { switch (relay_splicelen(cre->dst)) { case -1: goto fail; case 0: relay_close(con, "splice timeout", 1); return; case 1: bufferevent_enable(bev, EV_READ); break; } } else if (cre->dst->timedout) { relay_close(con, "splice timeout", 1); return; } if (relay_spliceadjust(cre) == -1) goto fail; if (relay_splice(cre) == -1) goto fail; return; } if (error & EVBUFFER_ERROR && errno == EFBIG) { if (relay_spliceadjust(cre) == -1) goto fail; bufferevent_enable(cre->bev, EV_READ); return; } if (error & (EVBUFFER_READ|EVBUFFER_WRITE|EVBUFFER_EOF)) { bufferevent_disable(bev, EV_READ|EV_WRITE); con->se_done = 1; if (cre->dst->bev != NULL) { dst = EVBUFFER_OUTPUT(cre->dst->bev); if (EVBUFFER_LENGTH(dst)) return; } else if (cre->toread == TOREAD_UNLIMITED || cre->toread == 0) return; relay_close(con, "done", 0); return; } relay_close(con, "buffer event error", 1); return; fail: relay_close(con, strerror(errno), 1); } void relay_accept(int fd, short event, void *arg) { struct privsep *ps = env->sc_ps; struct relay *rlay = arg; struct rsession *con = NULL; struct ctl_natlook *cnl = NULL; socklen_t slen; struct timeval tv; struct sockaddr_storage ss; int s = -1; event_add(&rlay->rl_ev, NULL); if ((event & EV_TIMEOUT)) return; slen = sizeof(ss); if ((s = accept_reserve(fd, (struct sockaddr *)&ss, &slen, FD_RESERVE, &relay_inflight)) == -1) { /* * Pause accept if we are out of file descriptors, or * libevent will haunt us here too. */ if (errno == ENFILE || errno == EMFILE) { struct timeval evtpause = { 1, 0 }; event_del(&rlay->rl_ev); evtimer_add(&rlay->rl_evt, &evtpause); log_debug("%s: deferring connections", __func__); } return; } if (rlay->rl_conf.flags & F_DISABLE) goto err; if ((con = calloc(1, sizeof(*con))) == NULL) goto err; /* Pre-allocate log buffer */ con->se_haslog = 0; con->se_log = evbuffer_new(); if (con->se_log == NULL) goto err; con->se_in.s = s; con->se_in.tls = NULL; con->se_out.s = -1; con->se_out.tls = NULL; con->se_in.dst = &con->se_out; con->se_out.dst = &con->se_in; con->se_in.con = con; con->se_out.con = con; con->se_in.splicelen = -1; con->se_out.splicelen = -1; con->se_in.toread = TOREAD_UNLIMITED; con->se_out.toread = TOREAD_UNLIMITED; con->se_relay = rlay; con->se_id = ++relay_conid; con->se_relayid = rlay->rl_conf.id; con->se_pid = getpid(); con->se_in.dir = RELAY_DIR_REQUEST; con->se_out.dir = RELAY_DIR_RESPONSE; con->se_retry = rlay->rl_conf.dstretry; con->se_bnds = -1; con->se_out.port = rlay->rl_conf.dstport; switch (ss.ss_family) { case AF_INET: con->se_in.port = ((struct sockaddr_in *)&ss)->sin_port; break; case AF_INET6: con->se_in.port = ((struct sockaddr_in6 *)&ss)->sin6_port; break; } memcpy(&con->se_in.ss, &ss, sizeof(con->se_in.ss)); slen = sizeof(con->se_sockname); if (getsockname(s, (struct sockaddr *)&con->se_sockname, &slen) == -1) { relay_close(con, "sockname lookup failed", 1); return; } getmonotime(&con->se_tv_start); bcopy(&con->se_tv_start, &con->se_tv_last, sizeof(con->se_tv_last)); if (rlay->rl_conf.flags & F_HASHKEY) { SipHash24_Init(&con->se_siphashctx, &rlay->rl_conf.hashkey.siphashkey); } relay_sessions++; SPLAY_INSERT(session_tree, &rlay->rl_sessions, con); relay_session_publish(con); /* Increment the per-relay session counter */ rlay->rl_stats[ps->ps_instance].last++; /* Pre-allocate output buffer */ con->se_out.output = evbuffer_new(); if (con->se_out.output == NULL) { relay_close(con, "failed to allocate output buffer", 1); return; } if (rlay->rl_conf.flags & F_DIVERT) { memcpy(&con->se_out.ss, &con->se_sockname, sizeof(con->se_out.ss)); con->se_out.port = relay_socket_getport(&con->se_out.ss); /* Detect loop and fall back to the alternate forward target */ if (bcmp(&rlay->rl_conf.ss, &con->se_out.ss, sizeof(con->se_out.ss)) == 0 && con->se_out.port == rlay->rl_conf.port) con->se_out.ss.ss_family = AF_UNSPEC; } else if (rlay->rl_conf.flags & F_NATLOOK) { if ((cnl = calloc(1, sizeof(*cnl))) == NULL) { relay_close(con, "failed to allocate nat lookup", 1); return; } con->se_cnl = cnl; bzero(cnl, sizeof(*cnl)); cnl->in = -1; cnl->id = con->se_id; cnl->proc = ps->ps_instance; cnl->proto = IPPROTO_TCP; memcpy(&cnl->src, &con->se_in.ss, sizeof(cnl->src)); memcpy(&cnl->dst, &con->se_sockname, sizeof(cnl->dst)); proc_compose(env->sc_ps, PROC_PFE, IMSG_NATLOOK, cnl, sizeof(*cnl)); /* Schedule timeout */ evtimer_set(&con->se_ev, relay_natlook, con); bcopy(&rlay->rl_conf.timeout, &tv, sizeof(tv)); evtimer_add(&con->se_ev, &tv); return; } if (rlay->rl_conf.flags & F_TLSINSPECT) { relay_preconnect(con); return; } relay_session(con); return; err: if (s != -1) { close(s); free(con); /* * the session struct was not completely set up, but still * counted as an inflight session. account for this. */ relay_inflight--; log_debug("%s: inflight decremented, now %d", __func__, relay_inflight); } } void relay_hash_addr(SIPHASH_CTX *ctx, struct sockaddr_storage *ss, int portset) { struct sockaddr_in *sin4; struct sockaddr_in6 *sin6; in_port_t port; if (ss->ss_family == AF_INET) { sin4 = (struct sockaddr_in *)ss; SipHash24_Update(ctx, &sin4->sin_addr, sizeof(struct in_addr)); } else { sin6 = (struct sockaddr_in6 *)ss; SipHash24_Update(ctx, &sin6->sin6_addr, sizeof(struct in6_addr)); } if (portset != -1) { port = (in_port_t)portset; SipHash24_Update(ctx, &port, sizeof(port)); } } int relay_from_table(struct rsession *con) { struct relay *rlay = con->se_relay; struct host *host = NULL; struct relay_table *rlt = NULL; struct table *table = NULL; int idx = -1; int cnt = 0; int maxtries; u_int64_t p = 0; /* the table is already selected */ if (con->se_table != NULL) { rlt = con->se_table; table = rlt->rlt_table; if (table->conf.check && !table->up) table = NULL; goto gottable; } /* otherwise grep the first active table */ TAILQ_FOREACH(rlt, &rlay->rl_tables, rlt_entry) { table = rlt->rlt_table; if ((rlt->rlt_flags & F_USED) == 0 || (table->conf.check && !table->up)) table = NULL; else break; } gottable: if (table == NULL) { log_debug("%s: session %d: no active hosts", __func__, con->se_id); return (-1); } switch (rlt->rlt_mode) { case RELAY_DSTMODE_ROUNDROBIN: if ((int)rlt->rlt_index >= rlt->rlt_nhosts) rlt->rlt_index = 0; idx = (int)rlt->rlt_index; break; case RELAY_DSTMODE_RANDOM: idx = (int)arc4random_uniform(rlt->rlt_nhosts); break; case RELAY_DSTMODE_SRCHASH: /* Source IP address without port */ relay_hash_addr(&con->se_siphashctx, &con->se_in.ss, -1); break; case RELAY_DSTMODE_LOADBALANCE: /* Source IP address without port */ relay_hash_addr(&con->se_siphashctx, &con->se_in.ss, -1); /* FALLTHROUGH */ case RELAY_DSTMODE_HASH: /* Local "destination" IP address and port */ relay_hash_addr(&con->se_siphashctx, &rlay->rl_conf.ss, rlay->rl_conf.port); break; default: fatalx("%s: unsupported mode", __func__); /* NOTREACHED */ } if (idx == -1) { /* handle all hashing algorithms */ p = SipHash24_End(&con->se_siphashctx); /* Reset hash context */ SipHash24_Init(&con->se_siphashctx, &rlay->rl_conf.hashkey.siphashkey); maxtries = (rlt->rlt_nhosts < RELAY_MAX_HASH_RETRIES ? rlt->rlt_nhosts : RELAY_MAX_HASH_RETRIES); for (cnt = 0; cnt < maxtries; cnt++) { if ((idx = p % rlt->rlt_nhosts) >= RELAY_MAXHOSTS) return (-1); host = rlt->rlt_host[idx]; DPRINTF("%s: session %d: table %s host %s, " "p 0x%016llx, idx %d, cnt %d, max %d", __func__, con->se_id, table->conf.name, host->conf.name, p, idx, cnt, maxtries); if (!table->conf.check || host->up == HOST_UP) goto found; p = p >> 1; } } else { /* handle all non-hashing algorithms */ host = rlt->rlt_host[idx]; DPRINTF("%s: session %d: table %s host %s, p 0x%016llx, idx %d", __func__, con->se_id, table->conf.name, host->conf.name, p, idx); } while (host != NULL) { DPRINTF("%s: session %d: host %s", __func__, con->se_id, host->conf.name); if (!table->conf.check || host->up == HOST_UP) goto found; host = TAILQ_NEXT(host, entry); } TAILQ_FOREACH(host, &table->hosts, entry) { DPRINTF("%s: session %d: next host %s", __func__, con->se_id, host->conf.name); if (!table->conf.check || host->up == HOST_UP) goto found; } /* Should not happen */ fatalx("%s: no active hosts, desynchronized", __func__); found: if (rlt->rlt_mode == RELAY_DSTMODE_ROUNDROBIN) rlt->rlt_index = host->idx + 1; con->se_retry = host->conf.retry; con->se_out.port = table->conf.port; bcopy(&host->conf.ss, &con->se_out.ss, sizeof(con->se_out.ss)); return (0); } void relay_natlook(int fd, short event, void *arg) { struct rsession *con = arg; struct relay *rlay = con->se_relay; struct ctl_natlook *cnl = con->se_cnl; if (cnl == NULL) fatalx("invalid NAT lookup"); if (con->se_out.ss.ss_family == AF_UNSPEC && cnl->in == -1 && rlay->rl_conf.dstss.ss_family == AF_UNSPEC && TAILQ_EMPTY(&rlay->rl_tables)) { relay_close(con, "session NAT lookup failed", 1); return; } if (cnl->in != -1) { bcopy(&cnl->rdst, &con->se_out.ss, sizeof(con->se_out.ss)); con->se_out.port = cnl->rdport; } free(con->se_cnl); con->se_cnl = NULL; relay_session(con); } void relay_session(struct rsession *con) { struct relay *rlay = con->se_relay; struct ctl_relay_event *in = &con->se_in, *out = &con->se_out; if (bcmp(&rlay->rl_conf.ss, &out->ss, sizeof(out->ss)) == 0 && out->port == rlay->rl_conf.port) { log_debug("%s: session %d: looping", __func__, con->se_id); relay_close(con, "session aborted", 1); return; } if (rlay->rl_conf.flags & F_UDP) { /* * Call the UDP protocol-specific handler */ if (rlay->rl_proto->request == NULL) fatalx("invalid UDP session"); if ((*rlay->rl_proto->request)(con) == -1) relay_close(con, "session failed", 1); return; } if ((rlay->rl_conf.flags & F_TLS) && (in->tls == NULL)) { relay_tls_transaction(con, in); return; } if (rlay->rl_proto->type != RELAY_PROTO_HTTP) { if (rlay->rl_conf.fwdmode == FWD_TRANS) relay_bindanyreq(con, 0, IPPROTO_TCP); else if (relay_connect(con) == -1) { relay_close(con, "session failed", 1); return; } } relay_input(con); } void relay_bindanyreq(struct rsession *con, in_port_t port, int proto) { struct privsep *ps = env->sc_ps; struct relay *rlay = con->se_relay; struct ctl_bindany bnd; struct timeval tv; bzero(&bnd, sizeof(bnd)); bnd.bnd_id = con->se_id; bnd.bnd_proc = ps->ps_instance; bnd.bnd_port = port; bnd.bnd_proto = proto; bcopy(&con->se_in.ss, &bnd.bnd_ss, sizeof(bnd.bnd_ss)); proc_compose(env->sc_ps, PROC_PARENT, IMSG_BINDANY, &bnd, sizeof(bnd)); /* Schedule timeout */ evtimer_set(&con->se_ev, relay_bindany, con); bcopy(&rlay->rl_conf.timeout, &tv, sizeof(tv)); evtimer_add(&con->se_ev, &tv); } void relay_bindany(int fd, short event, void *arg) { struct rsession *con = arg; if (con->se_bnds == -1) { relay_close(con, "bindany failed, invalid socket", 1); return; } if (relay_connect(con) == -1) relay_close(con, "session failed", 1); } void relay_connect_state(struct rsession *con, struct ctl_relay_event *cre, enum relay_state new) { DPRINTF("%s: session %d: %s state %s -> %s", __func__, con->se_id, cre->dir == RELAY_DIR_REQUEST ? "accept" : "connect", relay_state(cre->state), relay_state(new)); cre->state = new; } void relay_connect_retry(int fd, short sig, void *arg) { struct timeval evtpause = { 1, 0 }; struct rsession *con = arg; struct relay *rlay = con->se_relay; int bnds = -1; if (relay_inflight < 1) { log_warnx("%s: no connection in flight", __func__); relay_inflight = 1; } DPRINTF("%s: retry %d of %d, inflight: %d",__func__, con->se_retrycount, con->se_retry, relay_inflight); if (sig != EV_TIMEOUT) fatalx("%s: called without timeout", __func__); evtimer_del(&con->se_inflightevt); /* * XXX we might want to check if the inbound socket is still * available: client could have closed it while we were waiting? */ DPRINTF("%s: got EV_TIMEOUT", __func__); if (getdtablecount() + FD_RESERVE + relay_inflight > getdtablesize()) { if (con->se_retrycount < RELAY_OUTOF_FD_RETRIES) { evtimer_add(&con->se_inflightevt, &evtpause); return; } /* we waited for RELAY_OUTOF_FD_RETRIES seconds, give up */ event_add(&rlay->rl_ev, NULL); relay_abort_http(con, 504, "connection timed out", 0); return; } if (rlay->rl_conf.fwdmode == FWD_TRANS) { /* con->se_bnds cannot be unset */ bnds = con->se_bnds; } retry: if ((con->se_out.s = relay_socket_connect(&con->se_out.ss, con->se_out.port, rlay->rl_proto, bnds)) == -1) { log_debug("%s: session %d: " "forward failed: %s, %s", __func__, con->se_id, strerror(errno), con->se_retry ? "next retry" : "last retry"); con->se_retrycount++; if ((errno == ENFILE || errno == EMFILE) && (con->se_retrycount < con->se_retry)) { event_del(&rlay->rl_ev); evtimer_add(&con->se_inflightevt, &evtpause); evtimer_add(&rlay->rl_evt, &evtpause); return; } else if (con->se_retrycount < con->se_retry) goto retry; event_add(&rlay->rl_ev, NULL); relay_abort_http(con, 504, "connect failed", 0); return; } if (rlay->rl_conf.flags & F_TLSINSPECT) relay_connect_state(con, &con->se_out, STATE_PRECONNECT); else relay_connect_state(con, &con->se_out, STATE_CONNECTED); relay_inflight--; DPRINTF("%s: inflight decremented, now %d",__func__, relay_inflight); event_add(&rlay->rl_ev, NULL); if (errno == EINPROGRESS) event_again(&con->se_ev, con->se_out.s, EV_WRITE|EV_TIMEOUT, relay_connected, &con->se_tv_start, &rlay->rl_conf.timeout, con); else relay_connected(con->se_out.s, EV_WRITE, con); return; } int relay_preconnect(struct rsession *con) { int rv; log_debug("%s: session %d: process %d", __func__, con->se_id, privsep_process); rv = relay_connect(con); if (con->se_out.state == STATE_CONNECTED) relay_connect_state(con, &con->se_out, STATE_PRECONNECT); return (rv); } int relay_connect(struct rsession *con) { struct relay *rlay = con->se_relay; struct timeval evtpause = { 1, 0 }; int bnds = -1, ret; /* relay_connect should only be called once per relay */ if (con->se_out.state == STATE_CONNECTED) { log_debug("%s: connect already called once", __func__); return (0); } /* Connection is already established but session not active */ if ((rlay->rl_conf.flags & F_TLSINSPECT) && con->se_out.state == STATE_PRECONNECT) { if (con->se_out.tls == NULL) { log_debug("%s: tls connect failed", __func__); return (-1); } relay_connected(con->se_out.s, EV_WRITE, con); relay_connect_state(con, &con->se_out, STATE_CONNECTED); return (0); } if (relay_inflight < 1) { log_warnx("relay_connect: no connection in flight"); relay_inflight = 1; } getmonotime(&con->se_tv_start); if (con->se_out.ss.ss_family == AF_UNSPEC && !TAILQ_EMPTY(&rlay->rl_tables)) { if (relay_from_table(con) != 0) return (-1); } else if (con->se_out.ss.ss_family == AF_UNSPEC) { bcopy(&rlay->rl_conf.dstss, &con->se_out.ss, sizeof(con->se_out.ss)); con->se_out.port = rlay->rl_conf.dstport; } if (rlay->rl_conf.fwdmode == FWD_TRANS) { if (con->se_bnds == -1) { log_debug("%s: could not bind any sock", __func__); return (-1); } bnds = con->se_bnds; } /* Do the IPv4-to-IPv6 or IPv6-to-IPv4 translation if requested */ if (rlay->rl_conf.dstaf.ss_family != AF_UNSPEC) { if (con->se_out.ss.ss_family == AF_INET && rlay->rl_conf.dstaf.ss_family == AF_INET6) ret = map4to6(&con->se_out.ss, &rlay->rl_conf.dstaf); else if (con->se_out.ss.ss_family == AF_INET6 && rlay->rl_conf.dstaf.ss_family == AF_INET) ret = map6to4(&con->se_out.ss); else ret = 0; if (ret != 0) { log_debug("%s: mapped to invalid address", __func__); return (-1); } } retry: if ((con->se_out.s = relay_socket_connect(&con->se_out.ss, con->se_out.port, rlay->rl_proto, bnds)) == -1) { if (errno == ENFILE || errno == EMFILE) { log_debug("%s: session %d: forward failed: %s", __func__, con->se_id, strerror(errno)); evtimer_set(&con->se_inflightevt, relay_connect_retry, con); event_del(&rlay->rl_ev); evtimer_add(&con->se_inflightevt, &evtpause); evtimer_add(&rlay->rl_evt, &evtpause); /* this connect is pending */ relay_connect_state(con, &con->se_out, STATE_PENDING); return (0); } else { if (con->se_retry) { con->se_retry--; log_debug("%s: session %d: " "forward failed: %s, %s", __func__, con->se_id, strerror(errno), con->se_retry ? "next retry" : "last retry"); goto retry; } log_debug("%s: session %d: forward failed: %s", __func__, con->se_id, strerror(errno)); return (-1); } } relay_connect_state(con, &con->se_out, STATE_CONNECTED); relay_inflight--; DPRINTF("%s: inflight decremented, now %d",__func__, relay_inflight); if (errno == EINPROGRESS) event_again(&con->se_ev, con->se_out.s, EV_WRITE|EV_TIMEOUT, relay_connected, &con->se_tv_start, &rlay->rl_conf.timeout, con); else relay_connected(con->se_out.s, EV_WRITE, con); return (0); } void relay_close(struct rsession *con, const char *msg, int err) { char ibuf[128], obuf[128], *ptr = NULL; struct relay *rlay = con->se_relay; struct protocol *proto = rlay->rl_proto; SPLAY_REMOVE(session_tree, &rlay->rl_sessions, con); relay_session_unpublish(con); event_del(&con->se_ev); if ((env->sc_conf.opts & (RELAYD_OPT_LOGCON|RELAYD_OPT_LOGCONERR)) && msg != NULL) { bzero(&ibuf, sizeof(ibuf)); bzero(&obuf, sizeof(obuf)); (void)print_host(&con->se_in.ss, ibuf, sizeof(ibuf)); (void)print_host(&con->se_out.ss, obuf, sizeof(obuf)); if (EVBUFFER_LENGTH(con->se_log) && evbuffer_add_printf(con->se_log, "\r\n") != -1) { ptr = evbuffer_readln(con->se_log, NULL, EVBUFFER_EOL_CRLF); } if (err == 0 && (env->sc_conf.opts & RELAYD_OPT_LOGCON)) log_info("relay %s, " "session %d (%d active), %s, %s -> %s:%d, " "%s%s%s", rlay->rl_conf.name, con->se_id, relay_sessions, con->se_tag != 0 ? tag_id2name(con->se_tag) : "0", ibuf, obuf, ntohs(con->se_out.port), msg, ptr == NULL ? "" : ",", ptr == NULL ? "" : ptr); if (err == 1 && (env->sc_conf.opts & RELAYD_OPT_LOGCONERR)) log_warn("relay %s, " "session %d (%d active), %s, %s -> %s:%d, " "%s%s%s", rlay->rl_conf.name, con->se_id, relay_sessions, con->se_tag != 0 ? tag_id2name(con->se_tag) : "0", ibuf, obuf, ntohs(con->se_out.port), msg, ptr == NULL ? "" : ",", ptr == NULL ? "" : ptr); free(ptr); } if (proto->close != NULL) (*proto->close)(con); free(con->se_priv); relay_connect_state(con, &con->se_in, STATE_DONE); if (relay_reset_event(con, &con->se_in)) { if (con->se_out.s == -1) { /* * the output was never connected, * thus this was an inflight session. */ relay_inflight--; log_debug("%s: sessions inflight decremented, now %d", __func__, relay_inflight); } } if (con->se_in.output != NULL) evbuffer_free(con->se_in.output); relay_connect_state(con, &con->se_out, STATE_DONE); if (relay_reset_event(con, &con->se_out)) { /* Some file descriptors are available again. */ if (evtimer_pending(&rlay->rl_evt, NULL)) { evtimer_del(&rlay->rl_evt); event_add(&rlay->rl_ev, NULL); } } if (con->se_out.output != NULL) evbuffer_free(con->se_out.output); if (con->se_log != NULL) evbuffer_free(con->se_log); if (con->se_cnl != NULL) { #if 0 proc_compose_imsg(env->sc_ps, PROC_PFE, -1, IMSG_KILLSTATES, -1, cnl, sizeof(*cnl)); #endif free(con->se_cnl); } free(con); relay_sessions--; } int relay_reset_event(struct rsession *con, struct ctl_relay_event *cre) { int rv = 0; if (cre->state != STATE_DONE) relay_connect_state(con, cre, STATE_CLOSED); if (cre->bev != NULL) { bufferevent_disable(cre->bev, EV_READ|EV_WRITE); bufferevent_free(cre->bev); } if (cre->tls != NULL) tls_close(cre->tls); tls_free(cre->tls); tls_free(cre->tls_ctx); tls_config_free(cre->tls_cfg); free(cre->tlscert); if (cre->s != -1) { close(cre->s); rv = 1; } cre->bev = NULL; cre->tls = NULL; cre->tls_cfg = NULL; cre->tlscert = NULL; cre->s = -1; return (rv); } int relay_dispatch_pfe(int fd, struct privsep_proc *p, struct imsg *imsg) { struct relay *rlay; struct rsession *con, se; struct ctl_natlook cnl; struct timeval tv; struct host *host; struct table *table; struct ctl_status st; objid_t id; int cid; switch (imsg->hdr.type) { case IMSG_HOST_DISABLE: memcpy(&id, imsg->data, sizeof(id)); if ((host = host_find(env, id)) == NULL) fatalx("%s: desynchronized", __func__); if ((table = table_find(env, host->conf.tableid)) == NULL) fatalx("%s: invalid table id", __func__); if (host->up == HOST_UP) table->up--; host->flags |= F_DISABLE; host->up = HOST_UNKNOWN; break; case IMSG_HOST_ENABLE: memcpy(&id, imsg->data, sizeof(id)); if ((host = host_find(env, id)) == NULL) fatalx("%s: desynchronized", __func__); host->flags &= ~(F_DISABLE); host->up = HOST_UNKNOWN; break; case IMSG_TABLE_DISABLE: memcpy(&id, imsg->data, sizeof(id)); if ((table = table_find(env, id)) == NULL) fatalx("%s: desynchronized", __func__); table->conf.flags |= F_DISABLE; table->up = 0; TAILQ_FOREACH(host, &table->hosts, entry) host->up = HOST_UNKNOWN; break; case IMSG_TABLE_ENABLE: memcpy(&id, imsg->data, sizeof(id)); if ((table = table_find(env, id)) == NULL) fatalx("%s: desynchronized", __func__); table->conf.flags &= ~(F_DISABLE); table->up = 0; TAILQ_FOREACH(host, &table->hosts, entry) host->up = HOST_UNKNOWN; break; case IMSG_HOST_STATUS: IMSG_SIZE_CHECK(imsg, &st); memcpy(&st, imsg->data, sizeof(st)); if ((host = host_find(env, st.id)) == NULL) fatalx("%s: invalid host id", __func__); if (host->flags & F_DISABLE) break; if (host->up == st.up) { log_debug("%s: host %d => %d", __func__, host->conf.id, host->up); fatalx("%s: desynchronized", __func__); } if ((table = table_find(env, host->conf.tableid)) == NULL) fatalx("%s: invalid table id", __func__); DPRINTF("%s: [%d] state %d for " "host %u %s", __func__, p->p_ps->ps_instance, st.up, host->conf.id, host->conf.name); if ((st.up == HOST_UNKNOWN && host->up == HOST_DOWN) || (st.up == HOST_DOWN && host->up == HOST_UNKNOWN)) { host->up = st.up; break; } if (st.up == HOST_UP) table->up++; else table->up--; host->up = st.up; break; case IMSG_NATLOOK: bcopy(imsg->data, &cnl, sizeof(cnl)); if ((con = session_find(env, cnl.id)) == NULL || con->se_cnl == NULL) { log_debug("%s: session %d: expired", __func__, cnl.id); break; } bcopy(&cnl, con->se_cnl, sizeof(*con->se_cnl)); evtimer_del(&con->se_ev); evtimer_set(&con->se_ev, relay_natlook, con); bzero(&tv, sizeof(tv)); evtimer_add(&con->se_ev, &tv); break; case IMSG_CTL_SESSION: IMSG_SIZE_CHECK(imsg, &cid); memcpy(&cid, imsg->data, sizeof(cid)); TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) { SPLAY_FOREACH(con, session_tree, &rlay->rl_sessions) { memcpy(&se, con, sizeof(se)); se.se_cid = cid; proc_compose(env->sc_ps, p->p_id, IMSG_CTL_SESSION, &se, sizeof(se)); } } proc_compose(env->sc_ps, p->p_id, IMSG_CTL_END, &cid, sizeof(cid)); break; default: return (-1); } return (0); } int relay_dispatch_ca(int fd, struct privsep_proc *p, struct imsg *imsg) { switch (imsg->hdr.type) { case IMSG_CA_PRIVENC: case IMSG_CA_PRIVDEC: log_warnx("%s: priv%s result after timeout", __func__, imsg->hdr.type == IMSG_CA_PRIVENC ? "enc" : "dec"); return (0); } return (-1); } int relay_dispatch_parent(int fd, struct privsep_proc *p, struct imsg *imsg) { struct relay_ticket_key ticket; struct relay *rlay; struct rsession *con; struct timeval tv; objid_t id; switch (imsg->hdr.type) { case IMSG_BINDANY: bcopy(imsg->data, &id, sizeof(id)); if ((con = session_find(env, id)) == NULL) { log_debug("%s: session %d: expired", __func__, id); break; } /* Will validate the result later */ con->se_bnds = imsg_get_fd(imsg); evtimer_del(&con->se_ev); evtimer_set(&con->se_ev, relay_bindany, con); bzero(&tv, sizeof(tv)); evtimer_add(&con->se_ev, &tv); break; case IMSG_CFG_TABLE: config_gettable(env, imsg); break; case IMSG_CFG_HOST: config_gethost(env, imsg); break; case IMSG_CFG_PROTO: config_getproto(env, imsg); break; case IMSG_CFG_RULE: config_getrule(env, imsg); break; case IMSG_CFG_RELAY: config_getrelay(env, imsg); break; case IMSG_CFG_RELAY_TABLE: config_getrelaytable(env, imsg); break; case IMSG_CFG_RELAY_FD: config_getrelayfd(env, imsg); break; case IMSG_CFG_DONE: config_getcfg(env, imsg); break; case IMSG_CTL_START: relay_launch(); break; case IMSG_CTL_RESET: config_getreset(env, imsg); break; case IMSG_TLSTICKET_REKEY: IMSG_SIZE_CHECK(imsg, (&ticket)); memcpy(&env->sc_ticket, imsg->data, sizeof(env->sc_ticket)); TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) { if (rlay->rl_conf.flags & F_TLS) tls_config_add_ticket_key(rlay->rl_tls_cfg, env->sc_ticket.tt_keyrev, env->sc_ticket.tt_key, sizeof(env->sc_ticket.tt_key)); } break; default: return (-1); } return (0); } int relay_dispatch_hce(int fd, struct privsep_proc *p, struct imsg *imsg) { switch (imsg->hdr.type) { default: break; } return (-1); } static int relay_tls_ctx_create_proto(struct protocol *proto, struct tls_config *tls_cfg) { uint32_t protocols = 0; /* Set the allowed TLS protocols */ if (proto->tlsflags & TLSFLAG_TLSV1_2) protocols |= TLS_PROTOCOL_TLSv1_2; if (proto->tlsflags & TLSFLAG_TLSV1_3) protocols |= TLS_PROTOCOL_TLSv1_3; if (tls_config_set_protocols(tls_cfg, protocols) == -1) { log_warnx("could not set the TLS protocol: %s", tls_config_error(tls_cfg)); return (-1); } if (tls_config_set_ciphers(tls_cfg, proto->tlsciphers)) { log_warnx("could not set the TLS cypers: %s", tls_config_error(tls_cfg)); return (-1); } if ((proto->tlsflags & TLSFLAG_CIPHER_SERVER_PREF) == 0) tls_config_prefer_ciphers_client(tls_cfg); /* * Set session ID context to a random value. It needs to be the * same across all relay processes or session caching will fail. */ if (tls_config_set_session_id(tls_cfg, env->sc_conf.tls_sid, sizeof(env->sc_conf.tls_sid)) == -1) { log_warnx("could not set the TLS session ID: %s", tls_config_error(tls_cfg)); return (-1); } /* Set callback for TLS session tickets if enabled */ if (proto->tickets == 1) { /* set timeout to the ticket rekey time */ tls_config_set_session_lifetime(tls_cfg, TLS_SESSION_LIFETIME); tls_config_add_ticket_key(tls_cfg, env->sc_ticket.tt_keyrev, env->sc_ticket.tt_key, sizeof(env->sc_ticket.tt_key)); } if (tls_config_set_ecdhecurves(tls_cfg, proto->tlsecdhecurves) != 0) { log_warnx("failed to set ecdhe curves %s: %s", proto->tlsecdhecurves, tls_config_error(tls_cfg)); return (-1); } if (tls_config_set_dheparams(tls_cfg, proto->tlsdhparams) != 0) { log_warnx("failed to set dh params %s: %s", proto->tlsdhparams, tls_config_error(tls_cfg)); return (-1); } return (0); } /* * This function is not publicy exported because it is a hack until libtls * has a proper privsep setup */ void tls_config_use_fake_private_key(struct tls_config *config); int relay_tls_ctx_create(struct relay *rlay) { struct tls_config *tls_cfg, *tls_client_cfg; struct tls *tls = NULL; struct relay_cert *cert; int keyfound = 0; char *buf = NULL, *cabuf = NULL, *ocspbuf = NULL; off_t len = 0, calen = 0, ocsplen = 0; if ((tls_cfg = tls_config_new()) == NULL) { log_warnx("unable to allocate TLS config"); return (-1); } if ((tls_client_cfg = tls_config_new()) == NULL) { log_warnx("unable to allocate TLS config"); return (-1); } if (relay_tls_ctx_create_proto(rlay->rl_proto, tls_cfg) == -1) goto err; if (relay_tls_ctx_create_proto(rlay->rl_proto, tls_client_cfg) == -1) goto err; /* Verify the server certificate if we have a CA chain */ if (rlay->rl_conf.flags & F_TLSCLIENT) { /* * Currently relayd can't verify the name of certs and changing * this is non trivial. For now just disable name verification. */ tls_config_insecure_noverifyname(tls_client_cfg); if (rlay->rl_tls_ca_fd != -1) { if ((buf = relay_load_fd(rlay->rl_tls_ca_fd, &len)) == NULL) { log_warn("failed to read root certificates"); goto err; } rlay->rl_tls_ca_fd = -1; if (tls_config_set_ca_mem(tls_client_cfg, buf, len) != 0) { log_warnx("failed to set root certificates: %s", tls_config_error(tls_client_cfg)); goto err; } purge_key(&buf, len); } else { /* No root cert available so disable the checking */ tls_config_insecure_noverifycert(tls_client_cfg); } rlay->rl_tls_client_cfg = tls_client_cfg; } if (rlay->rl_conf.flags & F_TLS) { log_debug("%s: loading certificate", __func__); /* * Use the public key as the "private" key - the secret key * parameters are hidden in an extra process that will be * contacted by the RSA engine. The TLS library needs at * least the public key parameters in the current process. */ tls_config_use_fake_private_key(tls_cfg); TAILQ_FOREACH(cert, env->sc_certs, cert_entry) { if (cert->cert_relayid != rlay->rl_conf.id || cert->cert_fd == -1) continue; keyfound++; if ((buf = relay_load_fd(cert->cert_fd, &len)) == NULL) { log_warn("failed to load tls certificate"); goto err; } cert->cert_fd = -1; if (cert->cert_ocsp_fd != -1 && (ocspbuf = relay_load_fd(cert->cert_ocsp_fd, &ocsplen)) == NULL) { log_warn("failed to load OCSP staplefile"); goto err; } if (ocsplen == 0) purge_key(&ocspbuf, ocsplen); cert->cert_ocsp_fd = -1; if (keyfound == 1 && tls_config_set_keypair_ocsp_mem(tls_cfg, buf, len, NULL, 0, ocspbuf, ocsplen) != 0) { log_warnx("failed to set tls certificate: %s", tls_config_error(tls_cfg)); goto err; } /* loading certificate public key */ if (keyfound == 1 && !ssl_load_pkey(buf, len, NULL, &rlay->rl_tls_pkey)) goto err; if (tls_config_add_keypair_ocsp_mem(tls_cfg, buf, len, NULL, 0, ocspbuf, ocsplen) != 0) { log_warnx("failed to add tls certificate: %s", tls_config_error(tls_cfg)); goto err; } purge_key(&buf, len); purge_key(&ocspbuf, ocsplen); } if (rlay->rl_tls_cacert_fd != -1) { if ((cabuf = relay_load_fd(rlay->rl_tls_cacert_fd, &calen)) == NULL) { log_warn("failed to load tls CA certificate"); goto err; } log_debug("%s: loading CA certificate", __func__); if (!ssl_load_pkey(cabuf, calen, &rlay->rl_tls_cacertx509, &rlay->rl_tls_capkey)) goto err; } rlay->rl_tls_cacert_fd = -1; tls = tls_server(); if (tls == NULL) { log_warnx("unable to allocate TLS context"); goto err; } if (tls_configure(tls, tls_cfg) == -1) { log_warnx("could not configure the TLS context: %s", tls_error(tls)); tls_free(tls); goto err; } rlay->rl_tls_cfg = tls_cfg; rlay->rl_tls_ctx = tls; purge_key(&cabuf, calen); } if (rlay->rl_tls_client_cfg == NULL) tls_config_free(tls_client_cfg); if (rlay->rl_tls_cfg == NULL) tls_config_free(tls_cfg); return (0); err: purge_key(&ocspbuf, ocsplen); purge_key(&cabuf, calen); purge_key(&buf, len); tls_config_free(tls_client_cfg); tls_config_free(tls_cfg); return (-1); } static struct tls * relay_tls_inspect_create(struct relay *rlay, struct ctl_relay_event *cre) { struct tls_config *tls_cfg; struct tls *tls = NULL; /* TLS inspection: use session-specific certificate */ if ((tls_cfg = tls_config_new()) == NULL) { log_warnx("unable to allocate TLS config"); goto err; } if (relay_tls_ctx_create_proto(rlay->rl_proto, tls_cfg) == -1) { /* error already printed */ goto err; } tls_config_use_fake_private_key(tls_cfg); if (tls_config_set_keypair_ocsp_mem(tls_cfg, cre->tlscert, cre->tlscert_len, NULL, 0, NULL, 0) != 0) { log_warnx("failed to set tls certificate: %s", tls_config_error(tls_cfg)); goto err; } tls = tls_server(); if (tls == NULL) { log_warnx("unable to allocate TLS context"); goto err; } if (tls_configure(tls, tls_cfg) == -1) { log_warnx("could not configure the TLS context: %s", tls_error(tls)); tls_free(tls); goto err; } cre->tls_cfg = tls_cfg; cre->tls_ctx = tls; return (tls); err: tls_config_free(tls_cfg); return (NULL); } void relay_tls_transaction(struct rsession *con, struct ctl_relay_event *cre) { struct relay *rlay = con->se_relay; struct tls *tls_server; const char *errstr; u_int flag; if (cre->dir == RELAY_DIR_REQUEST) { if (cre->tlscert != NULL) tls_server = relay_tls_inspect_create(rlay, cre); else tls_server = rlay->rl_tls_ctx; if (tls_server == NULL) { errstr = "no TLS server context available"; goto err; } if (tls_accept_socket(tls_server, &cre->tls, cre->s) == -1) { errstr = "could not accept the TLS connection"; goto err; } flag = EV_READ; } else { cre->tls = tls_client(); if (cre->tls == NULL || tls_configure(cre->tls, rlay->rl_tls_client_cfg) == -1) { errstr = "could not configure the TLS client context"; goto err; } if (tls_connect_socket(cre->tls, cre->s, NULL) == -1) { errstr = "could not connect the TLS connection"; goto err; } flag = EV_WRITE; } log_debug("%s: session %d: scheduling on %s", __func__, con->se_id, (flag == EV_READ) ? "EV_READ" : "EV_WRITE"); event_again(&con->se_ev, cre->s, EV_TIMEOUT|flag, relay_tls_handshake, &con->se_tv_start, &rlay->rl_conf.timeout, cre); return; err: relay_close(con, errstr, 1); } void relay_tls_handshake(int fd, short event, void *arg) { struct ctl_relay_event *cre = arg; struct rsession *con = cre->con; struct relay *rlay = con->se_relay; int retry_flag = 0; int ret; char *msg; if (event == EV_TIMEOUT) { relay_close(con, "TLS handshake timeout", 1); return; } ret = tls_handshake(cre->tls); if (ret == 0) { #ifdef DEBUG log_info( #else log_debug( #endif "relay %s, tls session %d %s (%d active)", rlay->rl_conf.name, con->se_id, cre->dir == RELAY_DIR_REQUEST ? "established" : "connected", relay_sessions); if (cre->dir == RELAY_DIR_REQUEST) { relay_session(con); return; } if (rlay->rl_conf.flags & F_TLSINSPECT) { const uint8_t *servercert; size_t len; servercert = tls_peer_cert_chain_pem(con->se_out.tls, &len); if (servercert != NULL) { con->se_in.tlscert = ssl_update_certificate( servercert, len, rlay->rl_tls_pkey, rlay->rl_tls_capkey, rlay->rl_tls_cacertx509, &con->se_in.tlscert_len); } else con->se_in.tlscert = NULL; if (con->se_in.tlscert == NULL) relay_close(con, "could not create certificate", 1); else relay_session(con); return; } relay_connected(fd, EV_WRITE, con); return; } else if (ret == TLS_WANT_POLLIN) { retry_flag = EV_READ; } else if (ret == TLS_WANT_POLLOUT) { retry_flag = EV_WRITE; } else { if (asprintf(&msg, "TLS handshake error: %s", tls_error(cre->tls)) >= 0) { relay_close(con, msg, 1); free(msg); } else { relay_close(con, "TLS handshake error", 1); } return; } DPRINTF("%s: session %d: scheduling on %s", __func__, con->se_id, (retry_flag == EV_READ) ? "EV_READ" : "EV_WRITE"); event_again(&con->se_ev, fd, EV_TIMEOUT|retry_flag, relay_tls_handshake, &con->se_tv_start, &rlay->rl_conf.timeout, cre); } void relay_tls_connected(struct ctl_relay_event *cre) { /* * Hack libevent - we overwrite the internal bufferevent I/O * functions to handle the TLS abstraction. */ event_del(&cre->bev->ev_read); event_del(&cre->bev->ev_write); event_set(&cre->bev->ev_read, cre->s, EV_READ, relay_tls_readcb, cre->bev); event_set(&cre->bev->ev_write, cre->s, EV_WRITE, relay_tls_writecb, cre->bev); } void relay_tls_readcb(int fd, short event, void *arg) { char rbuf[IBUF_READ_SIZE]; struct bufferevent *bufev = arg; struct ctl_relay_event *cre = bufev->cbarg; short what = EVBUFFER_READ; int howmuch = IBUF_READ_SIZE; ssize_t ret; size_t len; if (event == EV_TIMEOUT) { what |= EVBUFFER_TIMEOUT; goto err; } if (bufev->wm_read.high != 0) howmuch = MINIMUM(sizeof(rbuf), bufev->wm_read.high); ret = tls_read(cre->tls, rbuf, howmuch); if (ret == TLS_WANT_POLLIN || ret == TLS_WANT_POLLOUT) { goto retry; } else if (ret == -1) { what |= EVBUFFER_ERROR; goto err; } len = ret; if (len == 0) { what |= EVBUFFER_EOF; goto err; } if (evbuffer_add(bufev->input, rbuf, ret) == -1) { what |= EVBUFFER_ERROR; goto err; } relay_bufferevent_add(&bufev->ev_read, bufev->timeout_read); len = EVBUFFER_LENGTH(bufev->input); if (bufev->wm_read.low != 0 && len < bufev->wm_read.low) return; if (bufev->wm_read.high != 0 && len > bufev->wm_read.high) { struct evbuffer *buf = bufev->input; event_del(&bufev->ev_read); evbuffer_setcb(buf, bufferevent_read_pressure_cb, bufev); return; } if (bufev->readcb != NULL) (*bufev->readcb)(bufev, bufev->cbarg); return; retry: relay_bufferevent_add(&bufev->ev_read, bufev->timeout_read); return; err: (*bufev->errorcb)(bufev, what, bufev->cbarg); } void relay_tls_writecb(int fd, short event, void *arg) { struct bufferevent *bufev = arg; struct ctl_relay_event *cre = bufev->cbarg; ssize_t ret; size_t len; short what = EVBUFFER_WRITE; if (event == EV_TIMEOUT) { what |= EVBUFFER_TIMEOUT; goto err; } if (EVBUFFER_LENGTH(bufev->output)) { ret = tls_write(cre->tls, EVBUFFER_DATA(bufev->output), EVBUFFER_LENGTH(bufev->output)); if (ret == TLS_WANT_POLLIN || ret == TLS_WANT_POLLOUT) { goto retry; } else if (ret == -1) { what |= EVBUFFER_ERROR; goto err; } len = ret; evbuffer_drain(bufev->output, len); } if (EVBUFFER_LENGTH(bufev->output) != 0) relay_bufferevent_add(&bufev->ev_write, bufev->timeout_write); if (bufev->writecb != NULL && EVBUFFER_LENGTH(bufev->output) <= bufev->wm_write.low) (*bufev->writecb)(bufev, bufev->cbarg); return; retry: relay_bufferevent_add(&bufev->ev_write, bufev->timeout_write); return; err: (*bufev->errorcb)(bufev, what, bufev->cbarg); } int relay_bufferevent_add(struct event *ev, int timeout) { struct timeval tv, *ptv = NULL; if (timeout) { timerclear(&tv); tv.tv_sec = timeout; ptv = &tv; } return (event_add(ev, ptv)); } #ifdef notyet int relay_bufferevent_printf(struct ctl_relay_event *cre, const char *fmt, ...) { int ret; va_list ap; va_start(ap, fmt); ret = evbuffer_add_vprintf(cre->output, fmt, ap); va_end(ap); if (cre->bev != NULL && ret != -1 && EVBUFFER_LENGTH(cre->output) > 0 && (cre->bev->enabled & EV_WRITE)) bufferevent_enable(cre->bev, EV_WRITE); return (ret); } #endif int relay_bufferevent_print(struct ctl_relay_event *cre, const char *str) { if (cre->bev == NULL) return (evbuffer_add(cre->output, str, strlen(str))); return (bufferevent_write(cre->bev, str, strlen(str))); } int relay_bufferevent_write_buffer(struct ctl_relay_event *cre, struct evbuffer *buf) { if (cre->bev == NULL) return (evbuffer_add_buffer(cre->output, buf)); return (bufferevent_write_buffer(cre->bev, buf)); } int relay_bufferevent_write_chunk(struct ctl_relay_event *cre, struct evbuffer *buf, size_t size) { int ret; ret = relay_bufferevent_write(cre, EVBUFFER_DATA(buf), size); if (ret != -1) evbuffer_drain(buf, size); return (ret); } int relay_bufferevent_write(struct ctl_relay_event *cre, void *data, size_t size) { if (cre->bev == NULL) return (evbuffer_add(cre->output, data, size)); return (bufferevent_write(cre->bev, data, size)); } int relay_cmp_af(struct sockaddr_storage *a, struct sockaddr_storage *b) { int ret = -1; struct sockaddr_in ia, ib; struct sockaddr_in6 ia6, ib6; switch (a->ss_family) { case AF_INET: bcopy(a, &ia, sizeof(struct sockaddr_in)); bcopy(b, &ib, sizeof(struct sockaddr_in)); ret = memcmp(&ia.sin_addr, &ib.sin_addr, sizeof(ia.sin_addr)); if (ret == 0) ret = memcmp(&ia.sin_port, &ib.sin_port, sizeof(ia.sin_port)); break; case AF_INET6: bcopy(a, &ia6, sizeof(struct sockaddr_in6)); bcopy(b, &ib6, sizeof(struct sockaddr_in6)); ret = memcmp(&ia6.sin6_addr, &ib6.sin6_addr, sizeof(ia6.sin6_addr)); if (ret == 0) ret = memcmp(&ia6.sin6_port, &ib6.sin6_port, sizeof(ia6.sin6_port)); break; default: break; } return (ret); } int relay_session_cmp(struct rsession *a, struct rsession *b) { struct relay *rlay = b->se_relay; struct protocol *proto = rlay->rl_proto; if (proto != NULL && proto->cmp != NULL) return ((*proto->cmp)(a, b)); return ((int)a->se_id - b->se_id); } void relay_log(struct rsession *con, char *msg) { if (con->se_haslog && con->se_log != NULL) { evbuffer_add(con->se_log, msg, strlen(msg)); } } SPLAY_GENERATE(session_tree, rsession, se_nodes, relay_session_cmp);